Радиация – это способность отдельных частиц к излучению или распространению энергии в пространство. Сила такой энергии является очень мощной и оказывает воздействие на вещества, в результате чего появляются новые ионы с разными зарядами.

Радиоактивность – это свойство веществ и предметов выделять ионизирующее излучение, т.е. они становятся источниками радиации. Почему так происходит?

Что такое изотопы и период полураспада?

Практически всегда частицы с ионизирующим излучением выпадают из атомного ядра различных химических элементов. При этом ядро находится в стадии радиоактивного распада. Только радиоактивные элементы могут выпускать ионизирующие частицы. Часто один и тот же элемент может иметь разные варианты существования – изотопы, которые подразделяются на стабильные и радиоактивные.

Каждому радиоактивному изотопу отведено определенное время для жизни. Когда ядро распадается, оно испускает частицу, и дальше процесс не идет. Периодом полураспада называют время жизни радиоактивных изотопов, за которое распадается половина их ядер. Если допустить, что все радиоактивные элементы полностью распадутся, то радиоактивность исчезнет. Однако периоды полураспада бывают самыми разными – от нескольких долей секунд до продолжительных миллионов лет.

Радиоактивные изотопы в природе образуются естественным путем (уран, калий, радий) или могут появляться искусственно – в результате деятельности человека при строительстве АЭС, проведении ядерных испытаний.

Виды радиации (излучения)

По сочетанию таких свойств, как состав, энергия и проникающая способность, выделяют следующие виды ионизирующего излучения:

  • излучение альфа-частиц – обладает сильной ионизацией – это достаточно тяжелые ядра гелия с положительным зарядом,
  • излучение бета-частиц – это поток заряженных электронов, по проникающей способности значительно превосходит альфа-частицы,
  • гамма-излучение – похоже на видимый световой поток, а по своей природе – это короткие волны электромагнитного излучения, способные проникать в окружающие предметы,
  • рентгеновское излучение – электромагнитные волны с меньшей энергией, чем гамма-излучение. Солнце – естественный и не менее мощный источник рентгеновских лучей, но слои атмосферы обеспечивают защиту от солнечного излучения,
  • нейтроны – электрически нейтральные частицы, которые возникают около работающих атомных реакторов. Доступ на такую территорию всегда ограничен.

Опасность разных видов радиационного излучения для человека

В качестве мощного источника излучения, опасного для здоровья и жизни человека, может выступать совершенно любой радиоактивный предмет или вещество. И в сравнении со многими другими возможными опасностями радиацию невозможно почувствовать, увидеть. Определить ее уровень можно только специальными приборами. Влияние радиационного излучения на здоровье человека зависит от его конкретного вида, периода времени и частоты воздействия.

Гамма-излучение для человека считается самым опасным. Альфа-излучение, хотя и обладает малой проникающей способностью, опасно в случае попадания альфа-частиц непосредственно в организм человека (в легкие или пищеварительную систему). При излучении бета-частиц необходимо защитить кожные покровы человека и не допустить их попадания внутрь.

При работе с рентгеновским оборудованием необходимо соблюдать меры защиты, поскольку излучение от него является мутагенным фактором, что приводит к мутации генов – изменению генетического материала клетки.

Все перечисленные виды радиационного излучения могут вызывать у человека:

  • серьезные заболевания – лейкоз, рак (легких, щитовидной железы),
  • инфекционные осложнения, нарушение обмена веществ, катаракту,
  • генетические нарушения (мутации), врожденные пороки,
  • выкидыши и бесплодие.

Последствия воздействия радиации на организм человека

Помимо появления различных заболеваний последствия радиационного излучения могут быть с летальным исходом:

  • при единственном посещение территории вблизи мощного естественного или искусственного источника радиации,
  • при постоянном получении доз облучения от радиоактивных предметов – при хранении дома антикварных вещей или драгоценных камней, получивших дозу радиации.

Заряженные частицы отличаются активным взаимодействием с разными веществами. В некоторых случаях от радиации защитит обычная плотная одежда. К примеру, альфа-частицы самостоятельно не проникают через кожу, но они опасны, если попадают вовнутрь – тогда на ткани концентрируется облучение изнутри.

Радиация наибольшее влияние оказывает на детей, что вполне объяснимо с научной точки зрения. С клетками, находящимися в стадии роста и деления, ионизирующее излучение вступает в реакцию быстрее. Тогда как у взрослых – деление клеток замедляется или даже приостанавливается, и воздействие излучения ощущается значительно меньше. Для беременных женщин крайне нежелательно и недопустимо получить ионизирующее излучение. В этот период внутриутробного формирования клетки растущего организма маленького человечка особенно восприимчивы к проникающей радиации, поэтому даже слабое или кратковременное ее воздействие негативно отразится на развитии плода. Для всех живых организмов радиация вредна. Она разрушает и повреждает структуру молекул ДНК.

Может ли радиация передаваться как болезнь – от человека к другим людям?

Многие люди уверены, что контактировать с облученными лицами опасно, поскольку есть вероятность заразиться. Такое мнение ошибочно – радиация оказывает воздействие на человеческий организм, но радиоактивных веществ в нем не образуется. Человек не становится источником излучения. Общаться с больными, страдающими от лучевой болезни или других заболеваний, появившихся в результате облучения, можно напрямую, без средств индивидуальной защиты. Лучевая болезнь от человека к другим людям не передается.

Опасными являются радиоактивные предметы с определенным зарядом и энергией – они становятся источниками излучения при непосредственном контакте.

Единицы измерения радиации и ее предельные нормы

Для получения результатов измерений важно учесть интенсивность радиации, определяя опасность самого ее источника и оценивая период времени, который можно провести около него без негативных последствий. Исследованиями и реакциями радиационного излучения на живые организмы занимался в Швеции ученый Рольф Зиверт. Именно в его честь названа единица измерения доз ионизирующего излучения – зиверт (Зв/час) – это величина энергии, которую поглощает один килограмм биологической ткани за один час, равная по воздействию полученной дозе гамма-излучения в 1 Гр (грэй). К примеру, облучение в 5 – 6 зивертов для человека смертельно.

Кроме определения единицы измерения Зиверт установил, что радиационное излучение не имеет конкретного нормативного уровня безопасности. Даже получив минимальную дозу радиации, у человека возникают генетические изменения и заболевания. Они могут не сразу проявиться, а лишь спустя определенный (длительный) промежуток времени. В такой ситуации, когда не существует абсолютных безопасных показателей ионизирующего излучения, устанавливаются его предельно допустимые нормы.

На территории России функции нормирования и контроля над радиационным облучением населения возложены на Госкомсанэпиднадзор. В соответствии с действующим законодательством и нормативной документацией он устанавливает пределы допустимых значений радиации, а также иные требования для ее ограничения.

Безопасным принят уровень радиации, не превышающий 0,5 микрозиверт в час – это максимально допустимый предел дозу облучения. Если его значение составляет 0,2 микрозиверта в час, то для человека это благоприятные условия – радиационный фон находится в пределах нормы. Поглощенная доза облучения имеет свойство накапливаться в человеческом организме. Однако для основной массы обычного населения в течение года значение не должно превышать 1 миллизиверта, за всю жизнь в среднем – не более 70 миллизивертов (из расчета на 70 лет).

Как измерить уровень радиации?

В обычной повседневной жизни предусмотрен только единственный способ определить уровень радиации – измерить ее специальным прибором – дозиметром. Это можно сделать самостоятельно или воспользоваться услугами специалистов . Дозиметры фиксируют ионизирующее излучение за определенный промежуток времени в дольных единицах – микро - или милизивертах в час.

Бытовые модификации приборов незаменимы для тех, кто стремится защитить себя от негативного влияния радиации. Дозиметром измеряют мощность дозы радиации в конкретном месте, где он находится или обследуют им определенные предметы – продукты питания, детские игрушки, строительные материалы и т.д. Полезно применять дозиметр:

  • для проверки радиационного фона в своем доме или квартире, особенно при покупке нового жилья,
  • для проверки территорий в походах, путешествиях по незнакомым удаленным местам,
  • для проверки земельного участка, предполагаемого для дачи, огорода,
  • для проверки грибов и ягод в лесу.

Очистить территорию или предметы от радиации без специальных средств невозможно, поэтому, когда дозиметром выявлены потенциально опасные источники излучения, их нужно избегать.

Оптимальный выбор дозиметра

Все приборы подразделяются на 2 группы:

  • для профессионального использования,
  • индивидуальные (бытовые).

Между собой они отличаются по 2 параметрам:

  • величине погрешности измерения,

Для профессиональных приборов она не должна превышать 7%, а для бытовых может составлять и 30%.

  • максимальному значению измерений.

Профессиональные дозиметры работают в диапазоне измерений от 0,05 до 999 мкЗв в час, тогда как индивидуальные в основном определяют дозы облучения не более 100 мкЗв в час.

Дополнительной функцией дозиметров каждого типа является режим поиска и звуковой сигнализации. На панели прибора задается определенное значение уровня радиации и при его обнаружении он издает звуковой сигнал, что очень удобно для большинства ситуаций, в том числе и для поиска опасных радиоактивных предметов.

В каких местах обязательно проводятся замеры радиации?

В некоторых местах общий фон радиации всегда превышает средние значения:

  • в горных районах,
  • в салонах и кабинах самолетов, космической техники.

Природным источником излучения является газ радон. Он находится в почве, не имеет запаха и цвета. Может проникать в помещения и даже в легкие человека. По этой причине важно отслеживать радиационный фон постоянно.

В целях контроля обязательно проводятся замеры уровня радиации:

  • на территориях, предусмотренных под строительство,
  • на объектах завершенного строительства при их сдаче в эксплуатацию,
  • в зданиях и помещениях при их реконструкции или капитальном ремонте.

Что такое радиационное заражение и когда оно происходит?

Радиационное заражение территории выявляется в тех случаях, когда на местности обнаружены опасные источники ионизирующего излучения. Реально это возможно в двух вариантах:

  • в результате концентрации радиоактивных веществ при ядерном взрыве. В окружающую среду попадают радиоактивные изотопы под воздействием мгновенного гамма-излучения.
  • в результате рассеивания радиоактивных частиц при техногенных авариях – утечках из ядерных реакторов, при повреждениях транспортировки или хранения радиоактивных отходов, при случайных потерях из промышленных и медицинских хранилищ.

В век развития информационных технологий и обилия компьютерной техники многих людей волнует вопрос о том, что компьютер является источником радиации. На самом деле это совсем не так. Небольшими дозами излучения по рентгеновскому типу отличались старые электролучевые мониторы (как и телевизоры старого поколения). Современные жидкокристаллические и плазменные дисплеи не обладают радиоактивными свойствами.

В самом широком смысле слова, радиация (лат. "сияние", "излучение") — это процесс распространения энергии в пространстве в форме различных волн и частиц. Сюда можно отнести: инфракрасное (тепловое), ультрафиолетовое, видимое световое излучение, а также различные типы ионизирующего излучения. Наибольший интерес с точки зрения здоровья и безопасности жизнедеятельности представляет ионизирующая радиация, т.е. виды излучений, способные вызывать ионизацию вещества, на которое они воздействуют. В частности, в живых клетках ионизирующая радиация вызывает образование свободных радикалов, накопление которых ведет к разрушению белков, гибели или перерождению клеток, а в итоге может вызвать смерть макроорганизма (животных, растений, человека). Именно поэтому в большинстве случаев под термином радиация принято подразумевать именно ионизирующее излучение. Стоит также понимать различия между такими терминами, как радиация и радиоактивность . Если первое можно применить к ионизирующему излучению, находящемуся в свободном пространстве, которое будет существовать, пока не поглотится каким-либо предметом (веществом), то радиоактивность — это способность веществ и предметов испускать ионизирующее излучение, т.е. быть источником радиации. В зависимости от характера предмета и его происхождения разделяют термины: естественная радиоактивность и искусственная радиоактивность. Естественная радиоактивность сопровождает спонтанный распад ядер вещества в природе и характерна для "тяжелых" элементов таблицы Менделеева (с порядковым номером более 82). Искусственная радиоактивность инициируется человеком целенаправленно с помощью различных ядерных реакций. Кроме того, стоит выделить так называемую "наведенную" радиоактивность , когда какое-то вещество, предмет или даже организм после сильного воздействия ионизирующей радиации сам становится источником опасного излучения за счет дестабилизации атомных ядер. Мощным источником излучения, опасным для жизни и здоровья человека, может быть любое радиоактивное вещество или предмет . В отличие от многих других видов опасности, радиация невидима без специальных приборов, что делает её ещё более пугающей. Причиной радиоактивности вещества являются нестабильные ядра, входящие в состав атомов, которые при распаде выделяют в окружающую среду невидимые излучения или частицы. В зависимости от различных свойств (состав, проникающая способность, энергия), сегодня выделяют множество видов ионизирующего излучения, из которых наиболее значимыми и распространенными являются: . Альфа-излучение . Источником радиации в нем являются частицы с положительным зарядом и сравнительно большим весом. Альфа-частицы (2 протона + 2 нейтрона) довольно громоздки и потому легко задерживаются даже незначительными преградами: одеждой, обоями, оконными занавесками и т.д. Даже если альфа-излучение попадает на обнаженного человека, в этом нет ничего страшного, дальше поверхностных слоев кожи оно не пройдет. Однако, несмотря на малую проникающую способность, альфа-излучение обладает мощной ионизацией, что особо опасно, если вещества-источники альфа-частиц попадают непосредственно в организм человека, например в легкие или пищеварительный тракт. . Бета-излучение . Представляет собой поток заряженных частиц (позитронов или электронов). Такое излучение обладает более значительной проникающей способностью, чем альфа-частицы, задержать его может деревянная дверь, оконное стек-ло, кузов автомобиля и т.д. Для человека опасно при воздействии на незащищенные кожные покровы, а также при попадании внутрь радиоактивных веществ. . Гамма-излучение и близкое к нему рентгеновское излучение. Ещё одна разновидность ионизирующей радиации, которая является родственной световому потоку, но с лучшей способностью к проникновению в окружающие предметы. По своему характеру это высокоэнергетическое коротковолновое электромагнитное излучение. Для того, чтобы задержать гамма-излучение в отдельных случаях может потребоваться стена из нескольких метров свинца, или нескольких десятков метров плотного железобетона. Для человека такое излучение является самым опасным. Основным источником этого вида излучения в природе является Солнце, однако, до человека смертоносные лучи не доходят благодаря защитному слою атмосферы.

Схема образования радиации различных типов Естественная радиация и радиоактивность В окружающей нас обстановке, вне зависимости от того, городская она или сельская, имеются естественные источники радиации. Как правило, ионизирующее излучение естественного происхождения редко представляет опасность для человека, его значения обычно находятся в пределах допустимой нормы. Естественной радиоактивностью обладает почва, вода, атмосфера, некоторые продукты и вещи, многие космические объекты. Первоисточником естественной радиации во многих случаях служит излучение Солнца и энергия распада некоторых элементов земной коры. Естественной радиоактивностью обладает даже сам человек. В организме каждого из нас имеются такие вещества как рубидий-87 и калий-40, создающие персональный радиационный фон. Источником радиационного излучения может быть здание, стройматериалы, предметы обихода, в которые входят вещества с нестабильными атомными ядрами. Стоит отметить, что естественный уровень радиации не везде одинаков. Так в некоторых городах, расположенных высоко в горах, уровень радиации превышает таковой на высоте мирового океана почти в пять раз. Также есть зоны земной поверхности, где радиация ощутимо выше за счет расположения в недрах земли радиоактивных веществ. Искусственная радиация и радиоактивность В отличие от естественной, искусственная радиоактивность — следствие человеческой деятельности. Источниками искусственной радиации являются: атомные электростанции, военная и мирная техника, использующая ядерные реакторы, места добычи полезных ископаемых с нестабильными атомными ядрами, зоны ядерных испытаний, места захоронения и утечки ядерного топлива, кладбища ядерных отходов, некоторая диагностическая и лечебная техника, а также радиоактивные изотопы в медицине.
Как обнаружить радиацию и радиоактивность? Единственным доступным для обычного человека способом определить уровень радиации и радиоактивности является использование специального прибора — дозиметра (радиометра). Принцип измерения заключается в регистрации и оценке количества частиц радиационного излучения с помощью счетчика Гейгера-Мюллера. Персональный дозиметр От воздействия радиации не застрахован никто. К сожалению, любой предмет вокруг нас может быть источником смертельного излучения: деньги, продукты питания, инструменты, стройматериалы, одежда, мебель, транспорт, земля, вода и т.д. В умеренных дозах наш организм способен без губительных последствий переносить воздействие радиации, однако сегодня редко кто уделяет достаточное внимание радиационной безопасности, ежедневно подвергая себя и свою семью смертельному риску. Чем опасна радиация для человека? Как известно, влияние радиации на организм человека или животного может быть двух видов: изнутри или снаружи. Здоровья не добавляет ни один из них. Кроме того, науке известно, что внутреннее влияние радиационных веществ опаснее внешнего. Чаще всего радиационные вещества попадают в наш организм вместе с зараженной водой и пищей. Для того, чтобы избежать внутреннего воздействия радиации достаточно знать, какие продукты питания являются её источником. А вот с внешним радиационным воздействием все немного иначе. Источники радиации Радиационный фон классифицируется на естественный и техногенный . Избежать естественной радиации на нашей планете практически невозможно, так как к ее источниками является Солнце и внутрипочвенный газ радон. Этот вид радиации практически не оказывает негативного воздействия на организм людей и животных, так как на поверхности Земли её уровень находится в рамках ПДК. Правда, в космосе или даже на высоте в 10 км на борту авиалайнера солнечная радиация может представлять реальную опасность. Таким образом, радиация и человек находятся в постоянном взаимодействии. С техногенными источниками радиации все неоднозначно. В некоторых сферах промышленности и добычи полезных ископаемых рабочие носят специальную защитную одежду от воздействия радиации. Уровень радиационного фона на таких объектах может быть гораздо больше допустимых норм.
Живя в современном мире, важно знать, что такое радиация и каким образом она влияет на людей, животных и растительность. Степень воздействия радиационного излучения на организм человека принято измерять в Зивертах (сокращенно Зв, 1 Зв = 1000 мЗв = 1000000 мкЗв). Делается это с помощью специальных приборов для измерения радиации — дозиметров. Под воздействием естественной радиации каждый из нас облучается в год на 2,4 мЗв, и мы этого не ощущаем, так как данный показатель является абсолютно безопасным для здоровья. Но при высоких дозах облучения последствия для организма человека или животного могут быть самые тяжелые. Из известных заболеваний, которые возникают вследствие облучения организма человека, отмечаются такие, как лейкоз, лучевая болезнь со всеми вытекающими отсюда последствиями, всевозможные виды опухолей, катаракта, инфекции, бесплодие. А при сильном облучении радиация может даже вызвать ожоги! Примерная картина последствий радиации при различных дозах выглядит следующим образом: . при дозе эффективного облучения организма в 1 Зв происходит ухудшение состава крови; . при дозе эффективного облучения организма в 2-5 Зв возникает облысение и белокровие (т.н. "лучевая болезнь"); . при дозе эффективного облучения организма в 3 Зв около 50 процентов людей умирают в течение одного месяца. То есть, радиация при определенном уровне воздействия представляет собой чрезвычайно серьзную опасность для всего живого. Также бытует масса разговоров по поводу того, что радиационное воздействие приводит к мутации на генном уровне. Одни ученые считают радиацию основной причиной мутаций, другие же утверждают, что трансформация генов вовсе не связана с воздействием ионизирующего излучения. В любом случае, вопрос о мутагенном эффекте радиации пока остается открытым. А вот примеров того, что радиация вызывает бесплодие — масса. Заразна ли радиация? Опасно ли контактировать с облученными людьми? Вопреки мнению многих, радиация не заразна. С больными, страдающими лучевой болезнью и другими заболеваниями, вызванными воздействием радиации, можно общаться без средств индивидуальной защиты. Но только в том случае, если они не вступали в непосредственный контакт с радиоактивными веществами и сами не являются источниками излучения! Для кого радиация наиболее опасна? Наиболее сильное влияние радиация оказывает на подрастающее поколение, то есть, на детей. Научно это объясняется тем, что ионизирующее излучение сильнее воздействует на клетки, находящиеся в стадии роста и деления. На взрослых людей оказывается гораздо меньшее влияние, так как деление клеток у них замедляется или приостанавливается. А вот беременным женщинам нужно опасаться радиации во что бы то ни стало! На стадии внутриутробного развития клетки подрастающего организма особенно чувствительны к облучению, поэтому даже несильное и кратковременное воздействие радиации может крайне негативно сказаться на развитии плода. Как распознать радиацию? Обнаружить радиацию без специальных приборов до появления проблем со здоровьем практически невозможно. В этом и заключается главная опасность радиации — она невидима! Современный рынок товаров (продовольственных и непродовольственных) контролируется специальными службами, которые проверяют соответствие продукции установленным нормам радиационного излучения. Тем не менее, вероятность приобрести вещь или даже продукт питания, радиационный фон которого не соответствует нормам, все же существует. Обычно такие товары привозят с зараженных территорий нелегальным способом. Хотите ли Вы кормить своего ребенка продуктами с содержанием радиационных веществ? Очевидно, нет. Тогда покупайте продукты только в проверенных местах. А еще лучше, купите прибор, измеряющий радиацию, и пользуйтесь им на здоровье!
Как бороться с радиацией? Самым простым и очевидным ответом на вопрос "Как вывести радиацию из организма?"является следующий: идите в спортзал! Физическая нагрузка приводит к повышенному потовыделению, а вместе с потом выводятся радиационные вещества. Также уменьшить влияние радиации на организм человека можно, если посетить сауну. Она оказывает практически такое же действие, как и физические нагрузки — приводит к повышенному выделению пота. Снизить влияние радиации на здоровье человека позволяет и употребление свежих овощей, фруктов. Необходимо знать, что на сегодняшний день идеального средства защиты от радиации пока не придумано. Самый простой и эффективный способ защитить себя от негативного воздействия смертоносных лучей — держаться подальше от их источника. Если знать все о радиации и уметь правильно пользоваться приборами для её измерения, то можно практически полностью избежать ее негативного воздействия. Что может быть источником радиации? Мы уже говорили, что полностью оградить себя от воздействия радиации на нашей планете практически невозможно. Каждый из нас непрерывно находится под воздействием радиоактивного излучения, естественного и техногенного. Источником радиации может быть все что угодно, начиная от безобидной на первый взгляд детской игрушки и заканчивая расположенным неподалеку предприятием. Однако эти предметы можно считать временными источниками радиации, от которых можно защититься. Кроме них существует ещё и общий радиационный фон, создаваемый сразу несколькими источниками, которые нас окружают. Фоновое ионизирующее излучение могут создавать газообразные, твердые и жидкие вещества различного назначения. К примеру, самым массовым газообразным источником естественной радиации является газ радон. Он постоянно в небольших количествах выделяется из недр Земли и накапливается в подвалах, низинах, на нижних этажах помещений и т.п. От радиоактивного газа полностью защитить не могут даже стены помещений. Более того, в некоторых случаях и сами стены зданий могут быть источником радиации. Радиационная обстановка в помещениях Радиация в помещениях, создаваемая стройматериалами, из которых возведены стены, может представлять серьезную угрозу для жизни и здоровья людей. Для оценки качества помещений и строений с точки зрения радиоактивности в нашей стране организованы специальные службы. Их задача периодически измерять уровень радиации в домах и общественных постройках и сравнивать полученные результаты с существующими нормативами. Если уровень радиации от стройматериалов в помещении находится в пределах этих норм, то комиссия одобряет его дальнейшую эксплуатацию. В противном случае зданию может быть предписан ремонт, а в некоторых случаях — снос с последующей утилизацией стройматериалов. Надо заметить, определенный радиационный фон создает практически любое строение. Причем, чем старше здание, тем выше уровень радиации в нем. С учетом этого при измерении уровня радиации в здании в расчет принимается и его возраст.
Предприятия — техногенные источники радиации Бытовая радиация Существует категория бытовых предметов, которые излучают радиацию, хотя и в пределах допустимых нормативов. Это, например, часы или компас, стрелки которых покрыты солями радия, за счет чего они светятся в темноте (знакомое всем фосфорное свечение). Также можно с уверенностью сказать, что радиация есть в помещении, в котором установлен телевизор или монитор на базе обычной ЭЛТ. Ради эксперимента специалисты поднесли дозиметр к компасу с фосфорными стрелками. Получили небольшое превышение общего фона, правда, в пределах нормы.
Радиация и медицина Радиоактивному облучению человек подвергается на всех этапах своей жизни, работая на промышленных предприятиях, находясь дома и даже проходя курс лечения. Классический пример использования радиации в медицине — ФЛГ. Согласно действующим правилам флюорографию каждый обязан проходить не реже одного раза в год. В ходе такой процедуры обследования мы подвергаемся воздействию радиации, но доза облучения в таких случаях находится в пределах норм безопасности.
Зараженные продукты Считается, что самым опасным источником радиации, с которым можно столкнуться в быту, являются продукты питания, являющиеся источником радиации. Мало кто знает, откуда привезена, например картошка или другие фрукты и овощи, от которых сейчас буквально ломятся полки продовольственных магазинов. А ведь именно эти товары могут представлять серьезную угрозу для здоровья человека, храня в своем составе радиоактивные изотопы. Радиационная пища сильнее других источников излучения воздействует на организм, так как попадает непосредственно внутрь него. Таким образом, определенную дозу радиации излучает большая часть предметов и веществ. Другое дело, какова величина этой дозы излучения: опасна она для здоровья или нет. Оценить опасность тех или иных веществ с радиационной точки зрения можно при помощи дозиметра. Как известно, в небольших дозах радиация не оказывает практически никакого воздействия на состояние здоровья. Всё, что нас окружает, создает естественный радиационный фон: растения, земля, вода, почва, солнечные лучи. Но это вовсе не значит, что ионизирующего излучения не следует бояться вовсе. Радиация безопасна только тогда, когда она в норме. Так какие же нормы считать безопасными? Нормы общей радиационной безопасности помещений Помещения с точки зрения радиационного фона считаются безопасными, если содержание в них частиц тория и радона не выходит за пределы 100 Бк на один кубический метр. Кроме того, радиационную безопасность можно оценить по разности эффективной дозы радиации в помещении и за его пределами. Она не должна выходить за рамки 0.3 мкЗв в час. Подобные измерения может провести каждый желающий — для этого достаточно купить персональный дозиметр. На уровень радиационного фона в помещениях сильно влияет качество материалов, используемых в строительстве и ремонте зданий. Именно поэтому перед проведением строительных работ специальные санитарные службы выполняют соответствующие замеры содержания радионуклидов в стройматериалах (например, определяют удельную эффективную активность радионуклидов). В зависимости от того, для какой категории объекта предполагается использовать тот или иной строительный материал, допустимые нормы удельной активности варьируются в достаточно широких пределах: . Для стройматериалов, используемых в возведении общественных и жилых объектов (I класс ) эффективная удельная активность не должна превышать значения в 370 Бк/кг. . У материалов для зданий II класса , то есть производственных, а также для строительства дорог в населенных пунктах порог допустимой удельной активности радионуклидов должен находиться на отметке 740 Бк/кг и ниже. . Дороги вне населенных пунктов, относящиеся к III классу должны возводиться с использованием материалов, удельная активность радионуклидов в которых не выходит за рамки 1,5 кБк/кг. . Для строительства объектов IV класса могут применяться материалы с удельной активностью радиационных компонентов не более 4 кБк/кг. Специалисты сайта выяснили, что на сегодняшний день стройматериалы с более высокими показателями содержания радионуклидов не допускаются к использованию. Какую воду можно пить? Предельно допустимые нормы содержания радионуклидов установлены и для питьевой воды. Вода допускается для питья и приготовления еды, если удельная активность альфа-радионуклидов в ней не превышает 0.1 Бк/кг, а бета-радионуклидов — 1 Бк/кг. Нормы поглощения радиации Известно, что каждый предмет способен поглощать ионизирующее излучение, находясь в зоне действия источника радиации. Не исключение и человек — наш организм поглощает радиацию ничуть не хуже, чем вода или земля. В соответствии с этим разработаны нормативы поглощенных ионочастиц для человека: . Для основного населения допустимая эффектная доза в год составляет 1 мЗв (в соответствии с этим ограничивается количество и качество диагностических меди-цинских процедур, которые оказывают радиационное воздействие на человека). . Для персонала группы А усредненный показатель может быть выше, но в год не должен выходить за пределы 20 мЗв. . Для рабочего персонала группы Б допустимая эффективная годовая доза ионизирующего излучения должна быть в среднем не более 5 мЗв. Существуют также нормы эквивалентной дозы облучения за год для отдельных органов человеческого организма: хрусталика глаза (до 150 мЗв), кожи (до 500 мЗв), кистей, стоп и т.п. Нормы общей радиационной обстановки Естественное излучение не нормируется, так как в зависимости от географического расположения и времени этот показатель может меняться в очень широком диапазоне. К примеру, последние измерения радиационного фона на улицах российской столицы показали, что уровень фона тут находится в диапазоне от 8 до 12 микрорентген в час. На горных вершинах, где защитные свойства атмосферы ниже, чем в населенных пунктах расположенных ближе к уровню мирового океана, показатели ионизирующего излучения могут быть выше московских значений даже в 5 раз! Также уровень радиационного фона может быть выше среднего в местах, где воздух перенасыщен пылью и песком с высоким содержанием тория, урана. Определить качество условий, в которых Вы живете или только собираетесь поселиться по параметру радиационной безопасности можно с помощью бытового дозиметра-радиометра. Это небольшое устройство может работать от аккумуляторов и позволяет оценить радиационную безопасность строительных материалов, удобрений, продуктов питания, что немаловажно в условиях и без того плохой экологии в мире. Несмотря на высокую опасность, которую несет в себе практически любой источник радиации, методы защиты от облучения все же существуют. Все способы защиты от радиационного воздействия можно разделить на три вида: время, расстояние и специальные экраны. Защита временем Смысл этого метода защиты от радиации заключается в том, чтобы максимально уменьшить время пребывания вблизи источника излучения. Чем меньше времени человек находится вблизи источника радиации, тем меньше вреда здоровью он причинит. Данный метод защиты использовался, к примеру, при ликвидации аварии на АЭС в Чернобыле. Ликвидаторам последствий взрыва на атомной электростанции отводилось всего несколько минут на то, чтобы сделать свою работу в пораженной зоне и вернуться на безопасную территорию. Превышение времени приводило к повышению уровня облучения и могло стать началом развития лучевой болезни и других последствий, которые может вызывать радиация. Защита расстоянием Если Вы обнаружили вблизи себя предмет, являющийся источником радиации — такой, который может представлять опасность для жизни и здоровья, необходимо удалиться от него на расстояние, где радиационный фон и излучение находятся в пределах допустимых норм. Также можно вывести источник радиации в безопасную зону или для захоронения. Противорадиационные экраны и спецодежда В некоторых ситуациях просто необходимо осуществлять какую-либо деятельность в зоне с повышенным радиационным фоном. Примером может быть устранение последствий аварии на атомных электростанциях или работы на промышленных предприятиях, где существуют источники радиоактивного излучения. Находиться в таких зонах без использования средств индивидуальной защиты опасно не только для здоровья, но и для жизни. Специально для таких случаев были разработаны средства индивидуальной защиты от радиации. Они представляют собой экраны из материалов, которые задерживают различные виды радиационного излучения и специальную одежду. Защитный костюм против радиации Из чего делают средства защиты от радиации? Как известно, радиация классифицируется на несколько видов в зависимости от характера и заряда частиц излучения. Чтобы противостоять тем или иным видам радиационного излучения средства защиты от него изготавливаются с использованием различных материалов: . Обезопасить человека от излучения альфа , помогают резиновые перчатки, "барьер" из бумаги или обычный респиратор.
. Если в зараженной зоне преобладает бета-излучение , то для того, чтобы оградить организм от его вредного воздействия потребуется экран из стекла, тонкого алюминиевого листа или такой материал, как плексиглас. Для защиты от бета-излучения органов дыхания обычным респиратором уже не отделаться. Тут потребуется противогаз.
. Сложнее всего оградить себя от гамма-излучения . Обмундирование, которое обладает экранирующим действием от такого рода радиации, выполняется из свинца, чугуна, стали, вольфрама и других металлов с высокой массой. Именно одежда из свинца использовалась при проведении работ на Чернобыльской АЭС после аварии.
. Всевозможные барьеры из полимеров, полиэтилена и даже воды эффективно предохраняют от вредного воздействия нейтронных частиц .
Пищевые добавки против радиации Очень часто совместно со спецодеждой и экранами для обеспечения защиты от радиации используются пищевые добавки. Они принимаются внутрь до или после попадания в зону с повышенным уровнем радиации и во многих случаях позволяют снизить токсическое воздействие радионуклидов на организм. Кроме того, снизить вредное воздействие ионизирующего излучения позволяют некоторые продукты питания. Элеутерококк снижает влияние радиации на организм 1) Продукты питания, снижающие действие радиации. Даже орехи, белый хлеб, пшеница, редиска способны в небольшой степени снижать последствия радиационного воздействия на человека. Дело в том, что в них содержится селен, препятствующий образованию опухолей, которые могут быть вызваны радиационным облучением. Очень хороши в борьбе с радиацией и биодобавки на основе водорослей (ламинарии, хлорелле). Частично избавить организм от проникших в него радиоактивных нуклидов позволяет даже лук и чеснок. АСД — препарат для защиты от радиации 2) Фармацевтические растительные препараты против радиации. Против радиации эффективное действие оказывает препарат "Корень женьшеня", который можно купить в любой аптеке. Его применяют в два приема перед едой в количестве 40-50 капель за один раз. Также для снижения концентрации радионуклидов в организме рекомендуется употреблять экстракт элеутерококк в объеме от четверти до половины чайной ложки в день вместе с выпиваемым утром и в обеденное время чаем. Левзея, заманиха, медуница также относятся к категории радио-протекционных препаратов, и приобрести их можно в аптечных пунктах.
Индивидуальная аптечка с препаратами для защиты от радиации Но, повторимся, что никакой препарат не может полностью противостоять воздействию радиации. Cамый лучший способ защиты от радиации — вообще не иметь контакта с зараженными предметами и не находится в местах с повышенным радиационным фоном. Дозиметры представляют собой измерительные приборы для числовой оценки дозы радиоактивного излучения или мощности этой дозы за единицу времени. Измерение производится с помощью встроенного или подключаемого отдельно счетчика Гейгера-Мюллера: он измеряет дозу радиации за счет подсчета количества ионизирующих частиц, проходящих через его рабочую камеру. Именно этот чувствительный элемент является главной деталью любого дозиметра. Полученные в ходе измерений данные преобразуются и усиливаются встроенной в дозиметр электроникой, а показания выводятся на стрелочный или числовой, чаще жидкокристаллический индикатор. По значению дозы ионизирующего излучения, которая обычно измеряется бытовыми дозиметрами в пределах от 0.1 до 100 мкЗв/ч (микрозиверт в час) можно оценивать степень радиационной безопасности территории или объекта. Для проверки веществ (как жидких, так и твердых) на предмет соответствия радиационным нормам необходим прибор, позволяющий производить измерение такой величины, как микрорентген. Большинство современных дозиметров позволяет измерять и эту величину в пределах от 10 до 10 000 мкР/ч, и именно поэтому такие устройства чаще называются дозиметрами-радиометрами. Виды дозиметров Все дозиметры классифицируются на профессиональные и индивидуальные (для использования в бытовых условиях). Разница между ними заключается в основном в пределах измерения и величине погрешности. В отличие от бытовых, профессиональные дозиметры имеют более широкий диапазон измерения (обычно от 0.05 до 999 мкЗв/ч), в то время как индивидуальные дозиметры в большинстве своем не способны определять дозы величиной более 100 мкЗв в час. Также профессиональные приборы отличаются от бытовых значением погрешности: для бытовых погрешность измерений может достигать 30 %, а для профессиональных — не может быть больше 7 %.
Современный дозиметр можно носить с собой везде! В число функций как профессиональных, так и бытовых дозиметров может входить звуковая сигнализация, которая включается при определенном пороге измеряемой дозы излучения. Значение, при котором срабатывает сигнализация, в некоторых приборах может задаваться самим пользователем. Данная функция позволяет легко находить потенциально опасные предметы. Назначение профессиональных и бытовых дозиметров: 1. Профессиональные дозиметры предназначены для использования на промышленных объектах, атомных подводных лодках и в других подобных местах, где есть риск получения высокой дозы облучения (это и объясняет то, что профессиональные дозиметры в основном обладают более широким диапазоном измерений). 2. Бытовые дозиметры могут использоваться населением для оценки радиационного фона в квартире или доме. Также при помощи таких дозиметров можно производить проверку стройматериалов на уровень радиационного излучения и территории, на которой планируется возвести постройку, проверять "чистоту" покупных фруктов, овощей, ягод, грибов, удобрений и т.п.
Компактный профессиональный дозиметр с двумя счетчиками Гейгера-Мюллера Бытовой дозиметр обладает небольшими размерами и массой. Работает, как правило, от аккумуляторов или батарей питания. Его можно брать с собой везде, например, при походе в лес за грибами или даже в магазин за продуктами. Функция радиометрии, которая есть практически во всех бытовых дозиметрах, позволяет быстро и эффективно оценивать состояние продуктов и их пригодность для употребления в пищу. Дозиметры прошлых лет были неудобными и громоздкими Купить дозиметр сегодня может практически каждый. Ещё не так давно они были доступны только специальным службам, обладали высокой стоимостью и большими габаритами, то значительно затрудняло их использование населением. Современные достижения в сфере электроники позволили значительно уменьшить размеры бытовых дозиметров и сделать их более доступными по цене. Обновленные приборы вскоре получили признание во всем мире и на сегодняшний день являются единственным эффективным решением для оценки дозы ионизирующего излучения. От столкновения с источниками радиации не застрахован никто. Узнать о том, что уровень радиации превышен, можно лишь по показаниям дозиметра или по особому предупреждающему знаку. Обычно подобные знаки устанавливаются вблизи техногенных источников радиации: заводов, атомных электростанций, мест захоронений радиоактивных отходов и т.п. На рынке или в магазине таких табличек Вы, конечно, не встретите. Но это вовсе не означает, что источников радиации в таких местах быть не может. Известны случаи, когда источником радиации были продукты питания, фрукты, овощи и даже медицинские препараты. Каким образом в товарах народного потребления могут оказаться радионуклиды, вопрос другой. Главное знать, как правильно вести себя в случае обнаружения источников радиации. Где можно найти радиоактивный предмет? Поскольку на промышленных объектах определенной категории вероятность столкнуться с источником радиации и получить дозу особенно высока, дозиметры здесь выдаются практически всему персоналу. Кроме того, рабочие проходят специальный обучающий курс, на котором людям объясняют, как вести себя при возникновении радиационной угрозы или при обнаружении опасного предмета. Также многие предприятия, работающие с радиоактивными веществами, оснащаются световой и звуковой сигнализацией, при срабатывании которой весь штат сотрудников предприятия быстро эвакуируется. В общем, работники промышленности хорошо осведомлены, как действовать при появлении радиационной угрозы. Дела обстоят совсем иначе, когда источники радиации обнаруживаются в быту или на улице. Многие из нас просто не знают, как поступить в таких ситуациях и что нужно делать. Предупреждающая табличка "радиоактивность" Как себя вести при обнаружении источника радиации? При обнаружении объекта радиационного излучения важно знать, как себя вести, чтобы радиационная находка не навредила ни Вам, ни окружающим. Учтите: если у Вас в руках оказался дозиметр, это не дает Вам никакого права, чтобы пытаться самостоятельно устранить обнаруженный источник радиации. Лучшее, что Вы можете сделать в такой ситуации — удалиться на безопасное расстояние от объекта и предупредить об опасности прохожих. Всю остальную работу по утилизации объекта следует доверить соответствующим органам, например, милиции. Поиском и утилизацией радиационных предметов занимаются соответствующие службы Мы уже не раз говорили о том, что источник радиации может быть обнаружен даже в продовольственном магазине. В таких ситуациях также нельзя молчать или пытаться "разобраться" с продавцами самостоятельно. Лучше вежливо предупредить администрацию магазина и обратиться в службу Санэпидем надзора. Если Вы не сделали опасную покупку, то это ещё не значит, что радиационный предмет не купит кто-либо другой!


Радиация и ионизирующие излучения

Слово «радиация» произошло от латинского слова «radiatio », что в переводе означает «сияние», «излучение».

Основное значение слова «радиация» (в соответствии со словарём Ожегова изд. 1953 года): излучение, идущее от какого-нибудь тела. Однако со временем оно было заменено на одно из его более узких значений - радиоактивное или ионизирующее излучение.

Радон активно поступает в наши дома с бытовым газом, водопроводной водой (особенно, если её добывают из очень глубоких скважин), или же просто просачивается через микротрещины почвы, накапливаясь в подвалах и на нижних этажах. Снизить содержание радона, в отличие от других источников радиации, очень просто: достаточно регулярно проветривать помещение и концентрация опасного газа уменьшится в несколько раз.

Искусственная радиоактивность

В отличие от естественных источников радиации, искусственная радиоактивность возникла и распространяется исключительно силами людей. К основным техногенным радиоактивным источникам относят ядерное оружие, промышленные отходы, атомные электростанции - АЭС, медицинское оборудование, предметы старины, вывезенные из «запретных» зон после аварии Чернобыльской АЭС, некоторые драгоценные камни.

Радиация может попадать в наш организм как угодно, часто виной этому становятся предметы, не вызывающие у нас никаких подозрений. Лучший способ обезопасить себя — проверить своё жилище и находящиеся в нём предметы на уровень радиоактивности либо купить дозиметр радиации. Мы сами ответственны за свою жизнь и здоровье. Защитите себя от радиации!



В Российской Федерации существуют нормативы, регламентирующие допустимые уровни ионизирующего излучения. С 15 августа 2010 года и по настоящее время действуют санитарно-эпидемиологические правила и нормативы СанПиН 2.1.2.2645-10 «Санитарно-эпидемиологические требования к условиям проживания в жилых зданиях и помещениях» .

Последние изменения были внесены 15 декабря 2010 года — СанПиН 2.1.2.2801-10 «Изменения и дополнения N 1 к СанПиН 2.1.2.2645-10 «Санитарно-эпидемиологические требования к условиям проживания в жилых зданиях и помещениях» .

Также действуют следующие нормативные документы, касающиеся ионизирующего излучения:

В соответствии с действующим СанПиН «мощность эффективной дозы гамма-излучения внутри зданий не должна превышать мощности дозы на открытой местности более чем на 0,2 мкЗв/час». При этом не сказано, какова же допустимая мощность дозы на открытой местности! В СанПиН 2.6.1.2523-09 написано, что «допустимое значение эффективной дозы , обусловленной суммарным воздействием природных источников излучения , для населения не устанавливается . Снижение облучения населения достигается путем установления системы ограничений на облучение населения от отдельных природных источников излучения», но при этом при проектировании новых зданий жилищного и общественного назначения должно быть предусмотрено, чтобы среднегодовая эквивалентная равновесная объемная активность дочерних изотопов радона и торона в воздухе помещений не превышала 100 Бк/м 3 , а в эксплуатируемых зданиях среднегодовая эквивалентная равновесная объемная активность дочерних продуктов радона и торона в воздухе жилых помещений не должна превышать 200 Бк/м 3 .

Однако в СанПиН 2.6.1.2523-09 в таблице 3.1 указано, что пределом эффективной дозы облучения для населения является 1 мЗв в год в среднем за любые последовательные 5 лет, но не более 5 мЗв в год . Таким образом, можно рассчитать, что предельная мощность эффективной дозы равна 5мЗв разделить на 8760 часов (количество часов в году), что равно 0,57мкЗв/час .

Под радиоактивностью подразумевается шаткость ядер в некоторых атомах. Она может проявляться в их восприимчивости к самопроизвольным превращениям (говоря научным термином - распадам), сопровождаемым проистеканием ионизирующих излучений, другими словами — радиацией. Энергетическая составляющая таких излучений довольно-таки значительна, вследствие этого она может влиять на вещества, с процессом создания новых ионов различных знаков. Вызывание радиации при помощи химической реакции невозможно, потому что это является целиком физическим процессом.

Радиацию различают в виде:

  • Альфа-частиц - сравнительно тяжелых частиц, заряженных положительно, представляющих собой ядра гелия;
  • Бета-частиц - обычных электронов;
  • Гамма-излучений - обладающих той же природой, что и свет, но с намного большей проникающей способностью;
  • Нейтронов - таких электрически нейтральных частиц, возникающих главным образом поблизости с работающими атомными реакторами, подступы к которым должны быть категорически ограничены;
  • Рентгеновских лучей - похожих с гамма-излучением, но обладающих меньшей энергией.

Единицы измерения радиоактивности

Радиоактивность измеряют в Беккерелях (БК), что соответствует одному распаду в секунду. Уровень содержания радиоактивности в веществах также часто оценивают единицами веса - Бк/кг, либо объемами - Бк/куб. м³. Порой можно повстречать такую единицу — Кюри (Ки). Она является выражением огромной величины, равной 37 биллионам Бк. В процессе распада веществ источники испускают ионизирующие излучения, мерой которых являются экспозиционные дозы. Они измеряются Рентгенами (Р). Один Рентген является величиной довольно-таки значительный, отчего на практике обычно используется миллионная (мкР) или тысячная (мР) доля Рентгена.

Бытовыми дозиметрами измеряю процессы ионизации в течение определенного времени. Имеется в виду не сама экспозиционная доза, а лишь уровень ее мощности. Единицей измерения является микрорентген/час. Собственно этот показатель и считается самым важным для людей, благодаря ему можно произвести оценку опасности тех или иных источников радиации.

Влияние радиации на состояние здоровья людей

Влияние радиации на людской организм называется облучением. В процессе этого воздействия радиоактивная энергия внедряется в клетки, при этом разрушая их. При облучении могут проявляться самые разнообразные болезни, типа инфекционных осложнений, нарушений обмена веществ, злокачественных опухолей и лейкоза, бесплодия, катаракты и многого другого. В особенности необычайно остро радиация может воздействовать на процесс деления клеток, из-за этого она представляет чрезвычайную опасность для детского организма.

Людской организм может реагировать не столько на саму радиацию, как на ее источники. Проникновение в организм радиоактивных веществ может происходить разными путями. Например, появление ее в кишечнике может происходить при приеме пищи или воды, в легких — в процессе дыхания, а на коже или через нее при проведении медицинской диагностики с помощью радиоизотопов. Это будет так называемым внутренним облучением.

Как вывести радиацию из организма? Таким вопросом, несомненно, задаются многие люди. Так, например, известно, что при употреблении отдельных продуктов питания, а также витаминов можно оказать помощь организму в его очистке от незначительных радиоактивных доз. Хотя во времена Чернобыльской катастрофы ходили слухи, что представители КГБ знали, как вывести радиацию, находясь в зоне, и выходили из нее без вреда для организма. Домыслы опирались на то, что они якобы принимали внутрь какой-то особый совершенно секретный активированный уголь или какой-то аналог.

Компьютеры – это тоже источники радиации?

Такие вопросы в эру компьютерных технологий и техники беспокоят многих людей. Единственными элементами в компьютерах, которые в теории могут быть радиоактивными, считаются только мониторы, в особенности электролучевые. В современных дисплеях, жидкокристаллических и плазменных, радиоактивных свойств не наблюдается.

В ЭЛТ-мониторах, как и в телевизорах, наблюдаются слабые источники излучения, но это рентгеновские типы излучений. Они возникают на внутренних поверхностях стекол экранов. Существенной толщиной этих же стекол, и поглощается большая их часть. В настоящее время не удалось обнаружить какое-либо негативное влияние ЭЛТ-мониторов на состояние здоровья, а в случае повального использования жидкокристаллических мониторов такие вопросы и вовсе потеряют свою актуальность.

Могут ли люди быть источниками радиации?

При воздействии радиации на людские организмы, в последних не образуются радиоактивные вещества, то есть люди не превращаются сами в источники радиации. Между прочим, производство рентгеновских снимков, наперекор широко распространенным представлениям, тоже является безопасными для людей. Следовательно, в противоположность заболеваниям, лучевые поражения от одного человека к другому передаваться не могут, тем не менее, присутствие радиоактивных предметов, несущих в себе заряды, может представлять опасность.

Как измеряются уровни радиации?

В основном уровни радиации измеряются при помощи дозиметров. Наличие таких бытовых приборов незаменимо для тех, кто намеревается предельно обезопаситься от вредоносного, да и вообще порой смертельного радиоактивного воздействия. Основным предназначением бытовых дозиметров является замер доз радиации в тех местах, где находятся люди, а также обследование каких-либо объектов или предметов. Это могут быть грузы, стройматериалы, деньги, продукты питания, детские игрушки и пр. Приобретают приборы, измеряющие уровни радиации, главным образом люди, которые нередко бывают в районах с радиоактивным загрязнением, в частности вызванным аварией на ЧАЭС. Следует отметить, что такие очаги существуют почти в большинстве областей европейской части России.

Помогают дозиметры и тем, кто бывают на незнакомых территориях, удаленных от цивилизаций, например в походах, при сборе грибов и ягод, а также на охоте. Непременным условием, особенно в последнее время, считается обследование на наличие радиационной безопасности мест, предполагаемых под строительство или приобретения домов, дач, огородов или земельных участков, в противном случае, подобные приобретения могут принести лишь смертельную опасность или тяжелые заболевания.

Очистка продуктов питания, земли или предметов от радиации почти невозможна, как заявляют современные ученные. Хотя имеются, конечно же, неподтвержденные данные, что установки для такой очистки существуют еще давно, как минимум со времен Чернобыля, но они по каким-то неведомым причинам засекречены. Таким образом, единственным доступным способом по защите себя и своей семьи остается держаться от всего этого как можно дальше. С помощью бытовых дозиметров как раз таки можно заниматься выявлением потенциально опасных источников.

Какие существуют мифы о радиации

В умах людей на сегодняшний день существуют разные мнения о радиации: использование йода или свинца для защиты от излучений, зеленые свечения радиоактивных веществ и другие мифы. Можно ли развенчать такое околонаучное мифотворчество и побороть общепринятые заблуждения? Что же говорит наука?

Радиацию «создали» люди

Сама по себе радиация естественного происхождения. В частности, в результате солнечного излучения также происходит зарождение радиационного фона. На юге, где, как известно, имеется весьма яркое и жаркое солнце, естественный радиационный фон довольно-таки высокий. Конечно, он не губительный для людей, однако он более высокий, чем в странах северного полушария. Кроме того, имеется и космическая радиация, которая из открытого космоса доходит до нашей планеты и встречается с атмосферой.

Наличие свинцовых стен защитит от радиации

Частичная правда

Объясняя эту точку зрения, желательно разобраться с некоторыми моментами. Во-первых, имеются несколько разновидностей радиации, которые в свою очередь связанны с самыми разнообразными типами распространяющихся частиц. Например, имеющиеся альфа-излучения весьма эффективно ионизируют все вокруг. Однако их может задержать обыкновенная верхняя одежда. Таким образом, если перед людьми находятся источники альфа-излучений, а они при этом одеты, да еще и в очках, то ничего страшного им не угрожает.

У бета-излучений ионизирующая восприимчивость ниже, однако это уже более глубоко проникающая радиация. Но и она может быть остановлена, к примеру, при помощи небольшого слоя алюминиевой фольги.

Ну и гамма-излучения, которые обладают, если сравнивать с одинаковой интенсивностью, наименьшей ионизирующей способностью. При этом они обладают наилучшей проникающей характеристикой, вследствие этого и считаются наиболее опасными. Таким образом, в каких бы защитных костюмах люди ни были перед гамма-источниками, они все равно бессильны и в любом случае получат свою дозу радиации.

Собственно предохранение от гамма-излучений в большинстве своем ассоциируется у людей с наличием свинцовых погребов, бункеров и прочими подобными атрибутами. Конечно, одинаковая толщина свинцового слоя будет куда более эффективной, чем такие же слои, к примеру, бетонных или деревянных укрытий. Свинец не является волшебным материалом, хотя и обладает важнейшим параметром - высокой плотностью. Собственно по причине высокой плотности материалы из свинца в действительности нередко употреблялись в защитных сооружениях середины XX столетия, в самом разгаре ядерной гонки вооружений. При всем при том свинец имеет определенную токсичность, отчего на сегодняшний день для тех же целей люди предпочитают пользоваться, к примеру, более толстыми слоями бетона.

Употребление йода может защитить от радиационного заражения

Употребление йода либо каких-нибудь его соединений абсолютно не противостоит негативному воздействию радиации. Так почему же медиками рекомендуется принятие йода, когда происходят техногенные катастрофы, при которых происходит выброс радионуклидов в атмосферу? А все потому, что когда в атмосфере или в воде обнаруживается присутствие радиоактивного йода-131, он весьма стремительно проникает в организмы людей. После чего происходит его накопление в щитовидных железах, с резким повышением рисков по развитию рака и прочих болезней, связанных с этими «нежными» органами. Заблаговременно «наполнив по максимуму» йодные депо в щитовидных железах, можно снизить захват радиоактивного йода и, следовательно, предохранить ткани от дальнейших накоплений радиации.

Все радиоактивные вещества обязательно светятся

Частичная правда

Все, что так или иначе связано с радиоактивным свечением специалисты называют радиолюминесценцией, и это не считается каким-то чрезвычайно распространенным явлением. Причем, оно по обыкновению вызывается не свечением самих радиоактивных материалов, а происходит при взаимодействии излучаемой радиации с окружающими материалами.

Еще в 1920–1930-х годах, на пике публичной заинтересованности в радиоактивных материалах, в различные бытовые приборы, лекарства и во многое другое, в том числе и в краску для стрелок в часах и окраски циферблата добавляли немного радия. В основном эту краску составляла основа сульфида цинка, смешанная с медью. Примеси радия испускали радиоактивное излучение, а при взаимодействии с краской светились зеленым.

Радиационное облучение обязательно приведет к мутациям

Действительно процесс радиоактивного излучения может привести к самым разнообразным повреждениям в ДНК-спиралях. Чтобы восстановить целостную систему генов, в процессе репарации поврежденные участки заполняются с помощью случайных нуклеотидов. Это является одним из вариантов возникновения нового вида мутации.

При всем при том желательно не забывать, что люди довольно-таки неплохо защищены от фоновых радиоактивных излучений. Присутствие фоновой радиации необязательно может привести к повреждению ДНК-спирали. Иногда, если у одной из двух цепей произошло повреждение, то она всегда может восстановиться, используя резервную вторую цепь.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Недавно из Страны восходящего солнца на крыльях радиационного облака прилетела страшная новость: на Фукусиме новая утечка, которую даже роботами не залатать. Через два часа они выходят из строя, что уж говорить про людей.

После таких заявлений хочется надеть на себя цинковый костюм и уехать куда-нибудь, где нет радиации. Но она есть везде - так уж устроен космос, человек тут совсем не при чем. Мы знаем про радиацию очень много: знаем, что она вызывает мутации, убивает, и на этом, в общем-то, наши познания заканчиваются. Но чем больше про нее узнаешь, тем спокойнее живешь.

1. Всё идет из космоса

Культура и Чернобыль научили нас паниковать при одном лишь упоминании слова «радиация». Но это всё равно что бояться своей кожи или жидкостей, поскольку радиация окружает нас повсюду. Она среди нас, она от нас неотделима. Каждый день ты контактируешь с радиоактивным, и дело вовсе не в АЭС, атомных подводных лодках и современных гаджетах. Мы просто живем в радиоактивной среде. 85% ежегодной дозы облучения - это так называемая природная радиация. Часть ее формируется из-за космического излучения. Но на протяжении всей истории не было идиотов, ходящих со свинцовыми зонтиками, зато есть люди, которые живут больше ста лет и не болеют. Если уж на то пошло, то самый сильный в истории выброс радиации произошел в 2004 году, и ни Чернобыль, ни Фукусима здесь не при чем. Виновата нейтронная звезда, находящаяся в 50 тысячах световых лет от нашей планеты.
Да что там, в ближайшие несколько тысяч лет система двойной звезды WR 104 должна превратиться в сверхновую. Этот выброс радиации может вызвать на Земле массовое вымирание, а может и не вызвать. В любом случае, бояться нужно именно таких доз.

2. Радиация - жизнь?

Научные факты говорят о том, что чем выше в гору, тем большему космическому излучению подвергается организм. То есть мы получаем меньше защиты от вредного излучения, когда поднимаемся всё дальше от земли. Казалось бы, всё очень плохо, но несмотря на высокий уровень излучения, наука выявила одну интересную особенность: у жителей горных местностей продолжительность жизни гораздо выше. В чем причина - сказать сложно, может быть, радиация является причиной их отменного здоровья. Четкого ответа, увы, нет. Зато недавно был обнаружен еще один плюс в копилку радиации. Оказывается, радиоактивный йод способен обнаружить и уничтожить в организме клетки больной щитовидной железы, даже если они успели поразить другие органы. То есть в перспективе радиацию можно использовать в лечении ненавистного рака.

3. Не всё так хорошо

Впрочем, не всё так гладко. На заре эпохи радиации ее использовали и в хвост, и в гриву, даже в медицине. Например, один врач-шарлатан продавал облученную радием воду, которая рекламировалась как лекарство от артрита, ревматизма, психических заболеваний, рака желудка и импотенции. В итоге сам создатель пострадал от своего детища: от радиевой воды челюсть и зубы горе-бизнесмена буквально распадались на части.

Кроме того, радиация способна сделать мужика стерильным, словно Ведьмака. Разные органы человека реагируют на радиоактивное излучение по-разному. Но, как оказалось, наиболее уязвимы половые клетки – . Перед тем, как отправить своих космонавтов на Луну, американские ученые протестировали чудесное воздействие радиации на 63 заключенных. Кому-то повезло больше, и они просто стали стерильными импотентами, а у кого-то болезни оказались серьезнее, с летальным исходом

4. Твой дом - твой источник

Самую большую дозу радиации ты получаешь прямо сейчас, сидя у себя дома, поскольку цемент, песок и щебень содержат природные радионуклиды. Поэтому эти строительные материалы законодательством разделяются по классам в зависимости от их «радиоактивности». Перед сдачей дома в эксплуатацию проводится проверка, чтобы выяснить, действительно ли безопасные материалы использовались при его строительстве. Но насколько она тщательная и неподкупная - сказать сложно.

5. Не все проблемы от АЭС

Так что для тесного контакта с радиацией совсем не обязательно идти работать на АЭС или выходить в космос без скафандра. Достаточно просто пойти работать в гражданскую авиацию и получить приличную дозу излучения. Поэтому они официально классифицируются как «работающие в условиях радиации» - как никак, близость к космосу дает о себе знать. То есть летая под куполом небесным, мы получаем фоновую дозу, превышающую суточную в 4 раза.

Это даже больше, чем после рентгена груди, хотя многие относятся к этой процедуре как к своеобразному самоубийству.

И коль уж речь зашла о профессиях, люди, живущие рядом с угольными электростанциями, получают большую дозу излучения, чем те, кто живет рядом с АЭС. Просто в угле очень много радиоактивных изотопов, как, собственно, и в сигаретном дыме.

6. Опасный камень

Но если бы радиация была так опасна, то, наверное, каждый, кто поднимается по гранитным ступеням, спускается в московское метро или идет по гранитной питерской набережной, умирал от лучевой болезни, поскольку уровень радиации в этом камне превышает даже нормы, допустимые на атомных электростанциях. Но пока что ни у кого не выжигались глаза, не выпадали волосы и не отходила пластами слизистая.

7. Радиоактивная пища

Бразильский орех является не только одним из самых дорогих, но и одним из самых радиоактивных продуктов в мире. Специалисты выяснили, что после приема в пищу даже незначительной порции бразильского ореха, моча и кал человека становятся чрезвычайно радиоактивными.

А всё от того, что корни у орешка уходят так глубоко в землю, что поглощают огромное количество радия, являющегося природным источником излучения.

Не лучше орехов и бананы. Они также производят большое количество излучения с той лишь разницей, что в бананах радиоактивность присутствует в их генетическом коде изначально. Но не стоит паниковать, надевать на себя комбинезон и идти закапывать его куда подальше. Чтобы у тебя возникли хотя бы малейшие симптомы лучевой болезни, нужно сожрать как минимум 5 миллионов плодов. Так что не нужно поддаваться панике, когда кто-то в очередной раз говорит, что горсть урана почти так же радиоактивна, как 10 бананов.

8. Это не заразно

В результате всего возникает резонный вопрос: а можно ли вообще контактировать с облученными людьми? Мало ли, как жизнь сложится, вдруг еще одна АЭС накроется медным тазом.

Вопреки мнению многих, радиация не заразна. С больными, страдающими лучевой болезнью и другими заболеваниями, вызванными воздействием радиации, можно общаться открыто, без средств индивидуальной защиты. То есть сам человек, подвергшийся действию радиации, не становится автоматическим излучателем радиоактивных веществ. А вот его одежда, испачканная радиоактивными материалами (жидкостью, пылью), создает некоторую опасность для других. Источником радиации можно назвать только больного, в организме которого находятся введенные медиками радиоактивные препараты. Но они быстро распадаются, поэтому серьезной опасности в этом случае нет.