Прямая (отрезок прямой) обозначается двумя большими буквами латинского алфавита или одной маленькой буквой. Точка обозначается только большой латинской буквой.

Прямые могут не пересекаться, пересекаться или совпадать. Пересекающиеся прямые имеют только одну общую точку, непересекающиеся прямые - ни одной общей точки, у совпадающих прямых все точки общие.

Определение. Две прямые, пересекающиеся под прямым углом, называются перпендикулярными. Перпендикулярность прямых (или их отрезков) обозначают знаком перпендикулярности «⊥».

Например:

Ваш AB и CD (рис. 1) пересекаются в точке О и ∠АОС = ∠ВОС = ∠АОD = ∠BOD = 90°, то AB CD .

Если AB CD (рис. 2) и пересекаются в точке В , то ∠АBC = ∠ABD = 90°

Свойства перпендикулярных прямых

1. Через точку А (рис. 3) можно провести только одну перпендикулярную прямую АВ к прямой СD; остальные прямые, проходящие через точку А и пересекающие СD , называются наклонными прямыми (рис. 3, прямые АЕ и АF ).

2. Из точки A можно опустить перпендикуляр на прямую CD ; длина перпендикуляра (длина отрезка АВ ), проведенного из точки А на прямую CD ,- это самое короткое расстояние от A до CD (рис. 3).

ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

На разработку конструкции прибора инженер тратить достаточно много времени. Изменяя и модифицируя конструкцию прибора. Почему, например, бытовой вентилятор имеет именно такую форму? Конструкция должна быть, такой что бы вентилятор не падал и прочно стоял перпендикулярно полу при работе. Конструкцию этого бытового прибора можно перенести на чертёж.

Пол мы заменим на плоскость α, штангу вентилятора изобразим в виде прямой а, ножки крепления в виде прямых b и с.

Предположим, что если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

Докажем предположение.

Рассмотрим нашу прямую а, которая будет перпендикулярна пересекающимся прямым b и с, лежащим в плоскости α. Обозначим точку пересечения прямых-точкой М.

Докажем, что прямая а перпендикулярна плоскости α.

Так как мы знаем, что прямая перпендикулярна плоскости, если перпендикулярна любой прямой лежащей в этой плоскости, то нам нужно доказать перпендикулярность прямой а произвольной прямой х.

Для доказательства построим дополнительно прямую у, параллельную прямой х и проходящую через точку М.

Дополнительно на прямой а отметим точки М1 и М2 так, чтобы точка М была серединой отрезка М1М2.

Так же проведём прямую в плоскости, пересекающую прямые b, с, у в точках В,С,Y соответственно.

Соединим полученные точки с концами отрезка М1М2. Так как прямые b и с перпендикулярны к прямой а и проходят через середину отрезка М1М2, то их можно назвать серединными перпендикулярами к отрезку М1М2. Тогда точки В и С равноудалены от концов отрезка, то есть отрезок М1В равен отрезку ВМ2, а отрезок М1С равен отрезку СМ2.

Треугольник ВМ1М равен треугольнику ВМ2М по трём сторонам. Из равенства треугольников следует, что угол М1ВY равен углу.

Тогда треугольники М1ВY равен треугольнику М2ВY по двум сторонам и углу между ними. Из равенства этих треугольников следует равенство отрезков М1Y и M2Y.

Это означает что треугольник М1YМ2 равнобедренный с основанием М1М2 и отрезок YМ его медиана, а по свойству медианы равнобедренного треугольника, проведенной к основанию треугольника, отрезок YМ является высотой, значит прямые у и а, содержащие эти отрезки, можно считать перпендикулярными.

Прямая у перпендикулярна прямой а, и параллельна прямой х. По лемме о перпендикулярности двух параллельных прямых к третьей прямой следует, что прямая х также перпендикулярна прямой а.

Итак, прямая а перпендикулярна любой прямой х, значит перпендикулярна плоскости α.

Но в этой теореме возможен ещё один случай расположения прямой а, который не демонстрирует наша конфигурация чертежа. Когда прямая а не проходит через точку пересечения прямых b и с.

Докажем и этот вариант.

В этом случае проведём прямую а1, параллельную прямой а и проходящую через точку М.

Важно вспомнить теорему изученную на предыдущем уроке:

если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна этой плоскости.

Так как прямая а перпендикулярна прямым b и с и параллельна прямой а1, то по лемме прямая а1 тоже будет перпендикулярна прямым b и с.

В этом расположении прямых мы уже доказали перпендикулярность прямой к плоскости.

Но тогда если прямая а1 перпендикулярна плоскости и параллельна прямой а, то по теореме 1 прямая а перпендикулярна плоскости α.

Эта теорема даёт возможность доказать перпендикулярность прямой плоскости с указанием перпендикулярности только двум пересекающимся прямым, лежащим в этой плоскости, а не любой прямой. В геометрии данное утверждение называется признаком перпендикулярности прямой и плоскости.

Рассмотрим применение признака перпендикулярности прямой и плоскости.

Дан треугольник АВС с суммой углов А и В в 90 градусов. Прямая ВD проведена перпендикулярно к плоскости треугольника АВС.

Прямая СD лежит в плоскости треугольника ВСD.

Треугольник АВС прямоугольный, так как угол АСВ равен разности 180 градусов и суммы углов А и В. Значит прямая АС перпендикулярна прямой ВС.

По условию прямая BD перпендикулярна плоскости АВС, значит она перпендикулярна прямой АС.

Тогда прямая АС перпендикулярна двум пересекающимся прямым ВС и ВD лежащим в плоскости треугольника ВСD, значит АС перпендикулярна к плоскости ВСD и перпендикулярна прямой СD лежащей в этой плоскости.

Рассмотри ещё пример решения задачи.

Даны два квадрата АВСD и АВEF.Они расположены так, что бы сторона AD AF.

Так как АВEF- квадрат, то прямая AВ перпендикулярна стороне AF.

Тогда по признаку перпендикулярности прямой и плоскости АF плоскости квадрата АВСD и прямой ВС лежащей в этой плоскости.

По определению квадрата АВСD сторона ВС перпендикулярна прямой АВ, но прямая АВ параллельна прямой FЕ плоскости АВEF, следовательно по лемме о параллельных прямых перпендикулярных к третьей прямой, прямая FE перпендикулярна прямой ВС.

Таким образом, прямая ВС перпендикулярна пересекающимся прямым АF и FE лежащим в плоскости AEF, что следовательно по признаку перпендикулярности прямой к плоскости, значит прямая ВС перпендикулярна к плоскости AEF.

В дальнейшем с помощью данного признака будут доказаны несколько главных теорем о перпендикулярности прямых и плоскостей в просранстве.

В статье рассматривается вопрос о перпендикулярных прямых на плоскости и трехмерном пространстве. Определение перпендикулярных прямых и их обозначения с приведенными примерами подробно разберем. Рассмотрим условия применения необходимого и достаточного условия перпендикулярности двух прямых и подробно рассмотрим на примере.

Yandex.RTB R-A-339285-1

Угол между пересекающимися прямыми в пространстве может быть прямым. Тогда говорят, что данные прямые перпендикулярные. Когда угол между скрещивающимися прямыми прямой, тогда прямые также являются перпендикулярными. Отсюда следует, что перпендикулярные прямые на плоскости пересекающиеся, а перпендикулярные прямые пространства могут быть пересекающимися и скрещивающимися.

То есть понятия «прямые a и b перпендикулярны» и «прямые b и a перпендикулярны» считаются равноправными. Отсюда и взялось понятие взаимно перпендикулярные прямые. Обобщив вышесказанное, рассмотрим определение.

Определение 1

Две прямые называют перпендикулярными, если угол при их пересечении дает 90 градусов.

Перпендикулярность обозначается « ⊥ », а запись принимает вид a ⊥ b , что значит, прямая a перпендикулярна прямой b .

Например, перпендикулярными прямыми на плоскости могут быть стороны квадрата с общей вершиной. В трехмерном пространстве прямые O x , O z , O y перпендикулярны попарно: O x и O z , O x и O y , O y и O z .

Перпендикулярность прямых – условия перпендикулярности

Свойства перпендикулярности необходимо знать, так как большинство задач сводится к его проверке для последующего решения. Бывают случаи, когда о перпендикулярности идет речь еще в условии задания или когда необходимо пользоваться доказательством. Для того, чтобы доказать перпендикулярность достаточно, чтобы угол между прямыми был прямым.

Для того, чтобы определить их перпендикулярность при известных уравнениях прямоугольной системы координат, необходимо применить необходимое и достаточное условие перпендикулярности прямых. Рассмотрим формулировку.

Теорема 1

Для того, чтобы прямые a и b были перпендикулярными, необходимо и достаточно, чтобы направляющий вектор прямой обладал перпендикулярностью относительно направляющего вектора заданной прямой b .

Само доказательство основывается на определении направляющего вектора прямой и на определении перпендикулярности прямых.

Доказательство 1

Пусть введена прямоугольная декартова система координат О х у с заданными уравнениями прямой на плоскости, которые определяют прямые a и b . Направляющие векторы прямых a и b обозначим a → и b → . Из уравнения прямых a и b необходимым и достаточным условием является перпендикулярность векторов a → и b → . Это возможно только при скалярном произведении векторов a → = (a x , a y) и b → = (b x , b y) равном нулю, а запись имеет вид a → , b → = a x · b x + a y · b y = 0 . Получим, что необходимым и достаточным условием перпендикулярности прямых a и b , находящихся в прямоугольной системе координат О х у на плоскости, является a → , b → = a x · b x + a y · b y = 0 , где a → = (a x , a y) и b → = b x , b y - это направляющие векторы прямых a и b .

Условие применимо, когда необходимо найти координаты направляющих векторов или при наличии канонических или параметрических уравнений прямых на плоскости заданных прямых a и b .

Пример 1

Заданы три точки A (8 , 6) , B (6 , 3) , C (2 , 10) в прямоугольной системе координат О х у. Определить, прямые А В и А С перпендикулярны или нет.

Решение

Прямые А В и А С имеют направляющие векторы A B → и A C → соответственно. Для начала вычислим A B → = (- 2 , - 3) , A C → = (- 6 , 4) . Получим, что векторы A B → и A C → перпендикулярны из свойства о скалярном произведении векторов, равном нулю.

A B → , A C → = (- 2) · (- 6) + (- 3) · 4 = 0

Очевидно, что необходимое и достаточное условие выполнимо, значит, А В и А С перпендикулярны.

Ответ: прямые перпендикулярны.

Пример 2

Определить, заданные прямые x - 1 2 = y - 7 3 и x = 1 + λ y = 2 - 2 · λ перпендикулярны или нет.

Решение

a → = (2 , 3) является направляющим вектором заданной прямой x - 1 2 = y - 7 3 ,

b → = (1 , - 2) является направляющим вектором прямой x = 1 + λ y = 2 - 2 · λ .

Перейдем к вычислению скалярного произведения векторов a → и b → . Выражение будет записано:

a → , b → = 2 · 1 + 3 · - 2 = 2 - 6 ≠ 0

Результат произведения не равен нулю, можно сделать вывод, что векторы не перпендикулярны, значит и прямые также не перпендикулярны.

Ответ: прямые не перпендикулярны.

Необходимое и достаточное условие перпендикулярности прямых a и b применяется для трехмерного пространства, записывается в виде a → , b → = a x · b x + a y · b y + a z · b z = 0 , где a → = (a x , a y , a z) и b → = (b x , b y , b z) являются направляющими векторами прямых a и b .

Пример 3

Проверить перпендикулярность прямых в прямоугольной системе координат трехмерного пространства, заданные уравнениями x 2 = y - 1 = z + 1 0 и x = λ y = 1 + 2 · λ z = 4 · λ

Решение

Знаменатели из канонических уравнений прямых считаются координатами направляющего вектора прямой. Координаты направляющего вектора из параметрического уравнения – коэффициенты. Отсюда следует, что a → = (2 , - 1 , 0) и b → = (1 , 2 , 4) являются направляющими векторами заданных прямых. Для выявления их перпендикулярности найдем скалярное произведение векторов.

Выражение примет вид a → , b → = 2 · 1 + (- 1) · 2 + 0 · 4 = 0 .

Векторы перпендикулярны, так как произведение равно нулю. Необходимое и достаточное условие выполнено, значит прямые также перпендикулярны.

Ответ: прямые перпендикулярны.

Проверка перпендикулярности может проводится, исходя из других необходимых и достаточных условий перпендикулярности.

Теорема 2

Прямые a и b на плоскости считаются перпендикулярными при перпендикулярности нормального вектора прямой a с вектором b , это и есть необходимое и достаточное условие.

Доказательство 2

Данное условие применимо, когда уравнения прямых дают быстрое нахождение координат нормальных векторов заданных прямых. То есть при наличии общего уравнения прямой вида A x + B y + C = 0 , уравнения прямой в отрезках вида x a + y b = 1 , уравнения прямой с угловым коэффициентом вида y = k x + b координаты векторов возможно найти.

Пример 4

Выяснить, перпендикулярны ли прямые 3 x - y + 2 = 0 и x 3 2 + y 1 2 = 1 .

Решение

Исходя их уравнений, необходимо найти координаты нормальных векторов прямых. Получим, что n α → = (3 , - 1) - это нормальный вектор для прямой 3 x - y + 2 = 0 .

Упростим уравнение x 3 2 + y 1 2 = 1 до вида 2 3 x + 2 y - 1 = 0 . Теперь четко видны координаты нормального вектора, которые запишем в такой форме n b → = 2 3 , 2 .

Векторы n a → = (3 , - 1) и n b → = 2 3 , 2 будут перпендикулярными, так как их скалярное произведение даст в итоге значение равное 0 . Получим n a → , n b → = 3 · 2 3 + (- 1) · 2 = 0 .

Необходимое и достаточное условие было выполнено.

Ответ: прямые перпендикулярны.

Когда прямая a на плоскости определена при помощи уравнения с угловым коэффициентом y = k 1 x + b 1 , а прямая b - y = k 2 x + b 2 , отсюда следует, что нормальные векторы будут иметь координаты (k 1 , - 1) и (k 2 , - 1) . Само условие перпендикулярности сводится к k 1 · k 2 + (- 1) · (- 1) = 0 ⇔ k 1 · k 2 = - 1 .

Пример 5

Выяснить, перпендикулярны ли прямые y = - 3 7 x и y = 7 3 x - 1 2 .

Решение

Прямая y = - 3 7 x имеет угловой коэффициент, равный - 3 7 , а прямая y = 7 3 x - 1 2 - 7 3 .

Произведение угловых коэффициентов дает значение - 1 , - 3 7 · 7 3 = - 1 , то есть прямые являются перпендикулярными.

Ответ: заданные прямые перпендикулярны.

Имеется еще одно условие, используемое для определения перпендикулярности прямых на плоскости.

Теорема 3

Для перпендикулярности прямых a и b на плоскости необходимым и достаточным условием является коллинеарность направляющего вектора одной из прямых с нормальным вектором второй прямой.

Доказательство 3

Условие применимо, когда есть возможность нахождения направляющего вектора одной прямой и координат нормального вектора другой. Иначе говоря, одна прямая задается каноническим или параметрическим уравнением, а другая общим уравнением прямой, уравнением в отрезках или уравнением прямой с угловым коэффициентом.

Пример 6

Определить, являются ли заданные прямые x - y - 1 = 0 и x 0 = y - 4 2 перпендикулярными.

Решение

Получаем, что нормальный вектор прямой x - y - 1 = 0 имеет координаты n a → = (1 , - 1) , а b → = (0 , 2) - направляющий вектор прямой x 0 = y - 4 2 .

Отсюда видно, что векторы n a → = (1 , - 1) и b → = (0 , 2) не коллинеарны, потому что условие коллинеарности не выполняется. Не существует такого числа t , чтобы выполнялось равенство n a → = t · b → . Отсюда вывод, что прямые не являются перпендикулярными.

Ответ: прямые не перпендикулярны.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Многие геометрические фигуры образованы пересекающимися под прямым углом прямыми. Например, это квадрат, прямоугольник, прямоугольный треугольник или прямая четырехугольная призма. В данной статье рассмотрим вопрос перпендикулярности двух прямых и условия, которые должны выполняться, чтобы прямая была перпендикулярна плоскости.

Какие уравнения важно знать?

Условия перпендикулярности двух прямых и прямой и плоскости не сложно получить, если известны соответствующие уравнения для названных геометрических объектов.

Уравнение любой прямой как на плоскости, так и в пространстве может быть записано в универсальном векторном виде. Для трехмерного случая оно выглядит следующим образом:

(x; y; z) = (x 0 ; y 0 ; z 0) + λ*(a; b; c)

Здесь переменные x, z и y являются координатами в выбранной системе, λ - любое действительное число, а тройка чисел (a; b; c) задают вектор в пространстве, который называется направляющим (вдоль него направлена прямая, проходящая через точку с координатами (x 0 ; y 0 ; z 0)). Это уравнение может быть преобразовано в общий вид, в каноническое и параметрическое.

Плоскость удобнее всего представлять в общем виде, что соответствует уравнению:

A*x + B*y + C*z + D = 0

Большие латинские буквы представляют собой коэффициенты. Это выражение также может быть представлено в векторном, параметрическом видах и в форме уравнения в отрезках. Удобство приведенной формы записи заключается в том, что первые три коэффициента соответствуют координатам вектора, который перпендикулярен этой плоскости, то есть:

n¯(A; B; C) - направляющий вектор плоскости

Перпендикулярность двух прямых

Условие перпендикулярности прямых не сложно понять, для этого достаточно установить, являются ли перпендикулярными их направляющие вектора. Последнее можно выяснить, вычислив скалярное произведение. Предположим, что v¯ и u¯ - вектора направляющие для двух прямых. Если последние являются перпендикулярными, тогда:

Это условие перпендикулярности двух прямых является обязательным. Тем не менее, оно будет достаточным только для случая двумерного пространства. В трехмерном же пространстве, помимо этого выражения, также следует вычислить расстояние между прямыми. Если равенство выше выполняется, и указанное расстояние равно нулю, тогда прямые будут пересекаться под углом 90 o , то есть будут перпендикулярными.

Для расчета дистанции d между прямыми в пространстве пользуются выражением:

d = ||/|u¯|

Здесь M 1 M 2 ¯ - вектор, построенный на двух точках, каждая из которых принадлежит соответствующей прямой (M 1 лежит на первой прямой, M 2 - на второй).

Плоскость и прямая

Перпендикулярности условие для этих объектов имеет следующий вид:

Иными словами, прямая будет пересекать плоскость под углом 90 o только тогда, когда ее будет параллелен нормали к плоскости. Факт параллельности означает, что вектор прямой u¯ можно получить, умножив нормальный к плоскости вектор n¯ на некоторое конкретное число k.

Существуют также другие способы узнать, являются ли параллельными вектора u¯ и n¯. Например, в случае их параллельности угол между ними должен быть равен нулю, то есть косинус угла, рассчитанного через скалярное произведение, будет равен 1. В свою очередь векторное произведение параллельных векторов равно нулю.

Заметим, если плоскость и прямая заданы не в общем и векторном виде, соответственно, тогда следует привести их к этим видам, а затем пользоваться приведенными формулами условий перпендикулярности.

Закрепим понятие перпендикулярности прямой и плоскости конспектом урока. Предоставим общее определение, сформулируем и приведём доказательства теоремы и решим несколько задач на закрепление материала.

Из курса геометрии известно: две прямые считаются перпендикулярными, когда они пересекаются под углом 90 о.

Вконтакте

Одноклассники

Теоретическая часть

Переходя к исследованию характеристик пространственных фигур, будем применять новое понятие.

Определение:

прямая будет называться перпендикулярной плоскости, когда она перпендикулярна прямой на поверхности, произвольно проходящей через точку пересечения.

Иначе говоря, если отрезок «АВ» перпендикулярен плоскости α, тогда угол пересечения со всяким отрезком, проведённым по данной поверхности через «С» точку прохождения «АВ» через плоскость α, будет 90 о.

Из вышесказанного вытекает теорема о признаке перпендикулярности прямой и плоскости:

в случае если прямая, проведённая через плоскость, будет перпендикулярна двум прямым, проведённым на плоскости через точку пересечения, то она перпендикулярна целой плоскости.

Говоря другими словами, если на рисунке 1 углы ACD и ACE равны 90 о, то и угол ACF тоже будет 90 о. Смотреть рисунок 3.

Доказательство

По условиям теоремы линия «а» проведена перпендикулярно линиям d и e. Иначе говоря, углы ACD и ACE равны 90 о. Приводить доказательства будем, исходя из свойств равенства треугольников. Смотреть рисунок 3.

Через точку C прохождения линии a через плоскость α прочертим линию f в произвольном направлении. Приведём доказательства, что она будет перпендикулярна отрезку AB или угол ACF будет 90 о.

На прямой a отложим отрезки одинаковой длины AC и AB. На поверхности α проведём линию x в произвольном направлении и не проходящую через место пересечения в точке «С». Линия «х» должна пересекать линии e, d и f.

Соединим прямыми точки F, D и E c точками A и B.

Рассмотрим два треугольника ACE и BCE. По условиям построения:

  1. Имеются две одинаковые стороны AC и BC.
  2. У них дна общая сторона CE.
  3. Два равных угла ACE и BCE — по 90 о.

Следовательно, по условиям равенства треугольников, если имеем две равные стороны и одинаковый угол между ними, то эти треугольники равны. Из равенства треугольников следует, что стороны AE и BE равны.

Соответственно доказывается равенство треугольников ACD и BCD, иначе говоря, равенство сторон AD и BD.

Теперь рассмотрим два треугольника AED и BED. Из ранее доказанного равенства треугольников следует, что у этих фигур есть одинаковые стороны AE с BE и AD с BD. Одна сторона ED общая. Из условия равенства треугольников, определённых по трём сторонам, следует, что углы ADE и BDE равны.

Сумма углов ADE и ADF составляет 180 о. Сумма углов BDE и BDF также будет 180 о. Так как углы ADE и BDE равны, то и углы ADF и BDF равны.

Рассмотрим два треугольника ADF и BDF. Они имеют по две равных стороны AD и BD (доказано ранее), DF общую сторону и по равному углу между ними ADF и BDF. Следовательно, эти треугольники имеют одинаковые по длине стороны. То есть сторона BF имеет ту же длину, что и сторона AF.

Если рассматривать треугольник AFB, то он будет равнобедренный (AF равняется BF), а прямая FC является медианой, так как по условиям построения сторона AC равняется стороне BC. Следовательно, угол ACF равняется 90 о. Что и следовало доказать.

Важным следствием из приведённой теоремы будет утверждение:

если две параллельные пересекают плоскость и одна из них составляет угол 90 о, то и вторая походит через плоскость под углом 90 о.

По условиям задачи a и b являются параллельными. Смотреть рисунок 4. Линия a перпендикулярна поверхности α. Отсюда следует, что линия b будет также перпендикулярна поверхности α.

Для доказательства через две точки пересечения параллельных прямых с плоскостью проведём на поверхности прямую c . По теореме о прямой, перпендикулярной плоскости, угол DAB будет 90 о. Из свойств параллельных прямых следует, что угол ABF тоже будет 90 о. Следовательно, по определению прямая b будет перпендикулярна поверхности α.

Использование теоремы для решения задач

Для закрепления материала, используя основополагающие условия перпендикулярности прямой и плоскости, решим несколько задач.

Задача № 1

Условия. Из точки A построить перпендикулярную линию плоскости α. Смотреть рисунок 5.

На поверхности α проведём произвольную прямую b. Через прямую b и точку A построим поверхность β. Из точки A на линию b проведём отрезок AB. Из точки B на поверхности α проведём перпендикулярную линию c .

Из точки A на линию с опустим перпендикуляр AC. Докажем, что эта линия будет перпендикулярна плоскости.

Для доказательства через точку C на поверхности α проведём линиюd, параллельную b, и через линию c и точку A построим плоскость. Линия AC перпендикулярна линии c по условию построения и перпендикулярна линии d, как следствие о двух параллельных линиях из теоремы о перпендикулярности, так как по условию линияb перпендикулярна поверхности γ.

Следовательно, по определению перпендикулярности линии и плоскости, построенный отрезок AC перпендикулярен поверхности α.

Задача № 2

Условия. Отрезок АВ перпендикулярен плоскости α. Треугольник BDF расположен на поверхности α и имеет следующие параметры:

  • угол DBF будет 90 о
  • сторона BD =12 см;
  • сторона BF =16 см;
  • BC - медиана.

Смотреть рисунок 6.

Найти длину отрезка АС, если АВ = 24 см.

Решение. По теореме Пифагора, гипотенуза или сторона DF равна квадратному корню из суммы квадратов катетов. Длина BD в квадрате равна 144 и, соответственно, BC в квадрате будет 256. В сумме 400; извлекая квадратный корень, получаем 20.

Медиана BC в прямоугольном треугольнике делит гипотенузу на две равные части и по длине равна этим отрезкам, то есть ВС = DC = CF = 10.

Снова используется теорема Пифагора, и получаем: гипотенуза C = 26, что является квадратным корнем из 675, суммы квадратов катетов 576 (АВ = 24 в квадрате) и 100 (ВС = 10 в квадрате).

Ответ: Длина отрезка АС равняется 26 см.