Звуки приносят человеку жизненно важную информацию - с их помощью мы общаемся, слушаем музыку, узнаем по голосу знакомых людей. Мир окружающих нас звуков разнообразен и сложен, однако мы достаточно легко ориентируемся в нем и можем безошибочно отличить пение птиц от шума городской улицы.

  • Звуковая волна - упругая продольная волна, вызывающая у человека слуховые ощущения. Колебания источника звука (например, струн или голосовых связок) вызывают появление продольной волны. Достигнув человеческого уха, звуковые волны заставляют барабанную перепонку совершать вынужденные колебания с частотой, равной частоте колебаний источника. Свыше 20 тыс. нитевидных рецепторных окончаний, находящихся во внутреннем ухе, преобразуют механические колебания в электрические импульсы. При передаче импульсов по нервным волокнам в головной мозг у человека возникают определенные слуховые ощущения.

Таким образом, в процессе распространения звуковой волны меняются такие характеристики среды, как давление и плотность.

Звуковые волны, воспринимаемые органами слуха, вызывают звуковые ощущения.

Звуковые волны классифицируются по частоте следующим образом:

  • инфразвук (ν < 16 Гц);
  • слышимый человеком звук (16 Гц < ν < 20000 Гц);
  • ультразвук (ν > 20000 Гц);
  • гиперзвук (10 9 Гц < ν < 10 12 -10 13 Гц).

Человек не слышит инфразвук, но каким-то образом эти звуки воспринимает. Так как например, опыты показали, что инфразвук вызывает неприятные тревожные ощущения.

Многие животные могут воспринимать ульразвуковые частоты. Например, собаки могут слышать звуки до 50000 Гц, а летучие мыши - до 100000 Гц. Инфразвук, распространяясь в воде на сотни километров, помогает китам и многим другим морским животным ориентироваться в толще воды.

Физические характеристики звука

Одной из важнейших характеристик звуковых волн является спектр.

  • Спектром называется набор различных частот, образующих данный звуковой сигнал. Спектр может быть сплошным или дискретным.

Сплошной спектр означает, что в данном наборе присутствуют волны, частоты которых заполняют весь заданный спектральный диапазон.

Дискретный спектр означает наличие конечного числа волн с определенными частотами и амплитудами, которые образуют рассматриваемый сигнал.

По типу спектра звуки разделяются на шумы и музыкальные тона.

  • Шум - совокупность множества разнообразных кратковременных звуков (хруст, шелест, шорох, стук и т.п.) - представляет собой наложение большого числа колебаний с близкими амплитудами, но различными частотами (имеет сплошной спектр). С развитием промышленности появилась новая проблема - борьба с шумом. Возникло даже новое понятие «шумовое загрязнение» среды обитания. Шум, особенно большой интенсивности, не просто надоедает и утомляет - он может и серьезно подорвать здоровье.
  • Музыкальный тон создается периодическими колебаниями звучащего тела (камертон, струна) и представляет собой гармоническое колебание одной частоты.

С помощью музыкальных тонов создается музыкальная азбука - ноты (до, ре, ми, фа, соль, ля, си), которые позволяют воспроизводить одну и ту же мелодию на различных музыкальных инструментах.

  • Музыкальный звук (созвучие) - результат наложения нескольких одновременно звучащих музыкальных тонов, из которых можно выделить основной тон, соответствующий наименьшей частоте. Основной тон называется также первой гармоникой. Все остальные тоны называются обертонами. Обертоны называются гармоническими, если частоты обертонов кратны частоте основного тона. Таким образом, музыкальный звук имеет дискретный спектр.

Любой звук, помимо частоты, характеризуется интенсивностью. Так реактивный самолет может создать звук интенсивностью порядка 10 3 Вт/м 2 , мощные усилители на концерте в закрытом помещении - до 1 Вт/м 2 , поезд метро - около 10 –2 Вт/м 2 .

Чтобы вызвать звуковые ощущения, волна должна обладать некоторой минимальной интенсивностью, называемой порогом слышимости. Интенсивность звуковых волн, при которой возникает ощущение давящей боли, называют порогом болевого ощущения или болевым порогом.

Интенсивность звука, улавливаемая ухом человека, лежит в широких пределах: от 10 –12 Вт/м 2 (порог слышимости) до 1 Вт/м 2 (порог болевого ощущения). Человек может слышать и более интенсивные звуки, но при этом он будет испытывать боль.

Уровень интенсивности звука L определяют по шкале, единицей которой является бел (Б) или, что гораздо чаще, децибел (дБ) (одна десятая бела). 1 Б - самый слабый звук, который воспринимает наше ухо. Эта единица названа в честь изобретателя телефона Александра Белла. Измерение уровня интенсивности в децибелах проще и поэтому принято в физике и технике.

Уровень интенсивности L любого звука в децибелах вычисляется через интенсивность звука по формуле

\(L=10\cdot lg\left(\frac{I}{I_0}\right),\)

где I - интенсивность данного звука, I 0 - интенсивность, соответствующая порогу слышимости.

В таблице 1 приведен уровень интенсивности различных звуков. Тем, кто при работе подвергается воздействию шума свыше 100 дБ, следует пользоваться наушниками.

Таблица 1

Уровень интенсивности (L ) звуков

Физиологические характеристики звука

Физическим характеристикам звука соответствуют определенные физиологические (субъективные) характеристики, связанные с восприятием его конкретным человеком. Это обусловлено тем, что восприятие звука - процесс не только физический, но и физиологический. Человеческое ухо воспринимает звуковые колебания определенных частот и интенсивностей (это объективные, не зависящие от человека характеристики звука) по-разному, в зависимости от «характеристик приемника» (здесь влияют субъективные индивидуальные черты каждого человека).

Основными субъективными характеристиками звука можно считать громкость, высоту и тембр.

  • Громкость (степень слышимости звука) определяется, как интенсивностью звука (амплитудой колебаний в звуковой волне), так и различной чувствительностью человеческого уха на разных частотах. Наибольшей чувствительностью человеческое ухо обладает в диапазоне частот от 1000 до 5000 Гц. При увеличении интенсивности в 10 раз уровень громкости увеличивается на 10 дБ. Вследствие этого, звук в 50 дБ оказывается в 100 раз интенсивнее звука в 30 дБ.
  • Высота звука определяется частотой звуковых колебаний, обладающих наибольшей интенсивностью в спектре.
  • Тембр (оттенок звука) зависит от того, сколько обертонов присоединяются к основному тону и какова их интенсивность и частота. По тембру мы легко отличаем звуки скрипки и рояля, флейты и гитары, голоса людей (табл. 2).

Таблица 2

Частота ν колебаний различных источников звука

Источник звука ν, Гц Источник звука ν, Гц
Мужской голос : 100 - 7000 Контрабас 60 - 8 000
бас 80 - 350 Виолончель 70 - 8 000
баритон 100 - 400 Труба 60 - 6000
тенор 130 - 500 Саксафон 80 - 8000
Женский голос : 200 - 9000 Рояль 90 - 9000
контральто 170 - 780 Музыкальные тона :
меццо-сопрано 200 - 900 Нота до 261,63
сопрано 250 - 1000 Нота ре 293,66
колоратурное сопрано 260 - 1400 Нота ми 329,63
Орган 22 - 16000 Нота фа 349,23
Флейта 260 - 15000 Нота соль 392,0
Скрипка 260 - 15000 Нота ля 440,0
Арфа 30 - 15000 Нота си 493,88
Барабан 90 - 14000

Скорость звука

Скорость звука зависит от упругих свойств, плотности и температуры среды. Чем больше упругие силы, тем быстрее передаются колебания частиц соседним частицам и тем быстрее распространяется волна. Поэтому скорость звука в газах меньше, чем в жидкостях, а в жидкостях, как правило, меньше чем в твердых телах (табл. 3). В вакууме звуковые волны, как и любые механические волны, не распространяются, так как там нет упругих взаимодействий между частицами среды.

Таблица 3.

Скорость звука в различных средах

Скорость звука в идеальных газах с ростом температуры растет пропорционально \(\sqrt{T},\) где T - абсолютная температура. В воздухе скорость звука υ = 331 м/с при температуре t = 0 °C и υ = 343 м/с при температуре t = 20 °C. В жидкостях и металлах скорость звука, как правило, уменьшается с ростом температуры (исключение - вода).

Впервые скорость распространения звука в воздухе была определена в 1640 г. французским физиком Мареном Мерсенном. Он измерял промежуток времени между моментами появления вспышки и звука при ружейном выстреле. Мерсенн определил, что скорость звука в воздухе равна 414 м/с.

Применение звука

Инфразвук в технике пока применять не научились. Зато широкое применение получил ультразвук.

  • Способ ориентации или исследования окружающих объектов, основанный на излучении ультразвуковых импульсов с последующим восприятием отраженных импульсов (эха) от различных объектов, называется эхолокацией , а соответствующие приборы - эхолокаторами .

Хорошо известны животные, обладающие способностью к эхолокации - летучие мыши и дельфины. По своему совершенству эхолокаторы этих животных не уступают, а во многом и превосходят (по надежности, точности, энергетической экономичности) современные эхолокаторы, созданные человеком.

Эхолокаторы, используемые под водой, называются гидролокаторами или сонарами (название sonar образован из начальных букв трех английских слов: sound - звук; navigation - навигация; range - дальность). Сонары незаменимы при исследованиях морского дна (его профиля, глубины), для обнаружения и исследования различных объектов, движущихся глубоко под водой. При их помощи могут быть легко обнаружены как отдельные большие предметы или животные, так и стаи небольших рыб или моллюсков.

Волны ультразвуковых частот широко используются в медицине в диагностических целях. УЗИ-сканеры позволяют исследовать внутренние органы человека. Ультразвуковое излучение, в отличие от рентгеновского, безвредно для человека.

Литература

  1. Жилко, В.В. Физика: учеб. пособие для 11 класса общеобразоват. шк. с рус. яз. обучения / В.В. Жилко, Л.Г. Маркович. - Минск: Нар. Асвета, 2009. - С. 57-58.
  2. Касьянов В.А. Физика. 10 кл.: Учебн. для общеобразоват. учреждений. - М.: Дрофа, 2004. - С. 338-344.
  3. Мякишев Г.Я., Синяков А.З. Физика: Колебания и волны. 11 кл.: Учеб. для углубленного изучения физики. - М.: Дрофа, 2002. - С. 184-198.

1. Звук, виды звука.

2. Физические характеристики звука.

3. Характеристики слухового ощущения. Звуковые измерения.

4. Прохождение звука через границу раздела сред.

5. Звуковые методы исследования.

6. Факторы, определяющие профилактику шума. Защита от шума.

7. Основные понятия и формулы. Таблицы.

8. Задачи.

Акустика. В широком смысле - раздел физики, изучающий упругие волны от самых низких частот до самых высоких. В узком смысле - учение о звуке.

3.1. Звук, виды звука

Звук в широком смысле - упругие колебания и волны, распространяющиеся в газообразных, жидких и твердых веществах; в узком смысле - явление, субъективно воспринимаемое органами слуха человека и животных.

В норме ухо человека слышит звук в диапазоне частот от 16 Гц до 20 кГц. Однако с возрастом верхняя граница этого диапазона уменьшается:

Звук с частотой ниже 16-20 Гц называется инфразвуком, выше 20 кГц -ультразвуком, а самые высокочастотные упругие волны в диапазоне от 10 9 до 10 12 Гц - гиперзвуком.

Звуки, встречающиеся в природе, разделяют на несколько видов.

Тон - это звук, представляющий собой периодический процесс. Основной характеристикой тона является частота. Простой тон создается телом, колеблющимся по гармоническому закону (например, камертоном). Сложный тон создается периодическими колебаниями, которые не являются гармоническими (например, звук музыкального инструмента, звук, создаваемый речевым аппаратом человека).

Шум - это звук, имеющий сложную неповторяющуюся временную зависимость и представляющий собой сочетание беспорядочно изменяющихся сложных тонов (шелест листьев).

Звуковой удар - это кратковременное звуковое воздействие (хлопок, взрыв, удар, гром).

Сложный тон, как периодический процесс, можно представить в виде суммы простых тонов (разложить на составляющие тоны). Такое разложение называется спектром.

Акустический спектр тона - это совокупность всех его частот с указанием их относительных интенсивностей или амплитуд.

Наименьшая частота в спектре (ν) соответствует основному тону, а остальные частоты называют обертонами или гармониками. Обертоны имеют частоты, кратные основной частоте: 2ν, 3ν, 4ν, ...

Обычно наибольшая амплитуда спектра соответствует основному тону. Именно он воспринимается ухом как высота звука (см. ниже). Обертоны создают «окраску» звука. Звуки одной и той же высоты, созданные разными инструментами, воспринимаются ухом по-разному именно из-за различного соотношения между амплитудами обертонов. На рисунке 3.1 показаны спектры одной и той же ноты (ν = 100 Гц), взятой на рояле и кларнете.

Рис. 3.1. Спектры ноты рояля (а) и кларнета (б)

Акустический спектр шума является сплошным.

3.2. Физические характеристики звука

1. Скорость (v). Звук распространяется в любой среде, кроме вакуума. Скорость его распространения зависит от упругости, плотности и температуры среды, но не зависит от частоты колебаний. Скорость звука в газе зависит от его молярной массы (М) и абсолютной температуры (Т):

Скорость звука в воде равна 1500 м/с; близкое значение имеет скорость звука и в мягких тканях организма.

2. Звуковое давление. Распространение звука сопровождается изменением давления в среде (рис. 3.2).

Рис. 3.2. Изменение давления в среде при распространении звука.

Именно изменения давления вызывают колебания барабанной перепонки, которые и определяют начало такого сложного процесса, как возникновение слуховых ощущений.

Звуковое давление Ρ) - это амплитуда тех изменений давления в среде, которые возникают при прохождении звуковой волны.

3. Интенсивность звука (I). Распространение звуковой волны сопровождается переносом энергии.

Интенсивность звука - это плотность потока энергии, переносимой звуковой волной (см. формулу 2.5).

В однородной среде интенсивность звука, испущенного в данном направлении, убывает по мере удаления от источника звука. При использовании волноводов можно добиться и увеличения интенсивности. Типичным примером такого волновода в живой природе является ушная раковина.

Связь между интенсивностью (I) и звуковым давлением (ΔΡ) выражается следующей формулой:

где ρ - плотность среды; v - скорость звука в ней.

Минимальные значения звукового давления и интенсивности звука, при которых у человека возникают слуховые ощущения, называются порогом слышимости.

Для уха среднего человека на частоте 1 кГц порогу слышимости соответствуют следующие значения звукового давления (ΔΡ 0) и интенсивности звука (I 0):

ΔΡ 0 = 3х10 -5 Па (≈ 2х10 -7 мм рт.ст.); I 0 = 10 -12 Вт/м 2 .

Значения звукового давления и интенсивности звука, при которых у человека возникают выраженные болевые ощущения, называются порогом болевого ощущения.

Для уха среднего человека на частоте 1 кГц порогу болевого ощущения соответствуют следующие значения звукового давления (ΔΡ m) и интенсивности звука (I m):

4. Уровень интенсивности (L). Отношение интенсивностей, соответствующих порогам слышимости и болевого ощущения, столь велико (I m /I 0 = 10 13), что на практике используют логарифмическую шкалу, вводя специальную безразмерную характеристику - уровень интенсивности.

Уровнем интенсивности называют десятичный логарифм отношения интенсивности звука к порогу слышимости:

Единицей измерения уровня интенсивности является бел (Б).

Обычно используют более мелкую единицу уровня интенсивности - децибел (дБ): 1 дБ = 0,1 Б. Уровень интенсивности в децибелах вычисляется по следующим формулам:

Логарифмический характер зависимости уровня интенсивности от самой интенсивности означает, что при увеличении интенсивности в 10 раз уровень интенсивности возрастает на 10 дБ.

Характеристики часто встречающихся звуков приведены в табл. 3.1.

Если человек слышит звуки, приходящие с одного направления от нескольких некогерентных источников, то их интенсивности складываются:

Высокий уровень интенсивности звука приводит к необратимым изменениям в слуховом аппарате. Так, звук в 160 дБ может вызвать разрыв барабанной перепонки и смещение слуховых косточек в среднем ухе, что приводит к необратимой глухоте. При 140 дБ человек ощущает сильную боль, а продолжительное действие шума в 90-120 дБ приводит к поражению слухового нерва.

3.3. Характеристики слухового ощущения. Звуковые измерения

Звук является объектом слухового ощущения. Он оценивается человеком субъективно. Все субъективные характеристики слухового ощущения связаны с объективными характеристиками звуковой волны.

Высота, тембр

Воспринимая звуки, человек различает их по высоте и тембру.

Высота тона обусловлена прежде всего частотой основного тона (чем больше частота, тем более высоким воспринимается звук). В меньшей степени высота зависит от интенсивности звука (звук большей интенсивности воспринимается более низким).

Тембр - это характеристика звукового ощущения, которая определяется его гармоническим спектром. Тембр звука зависит от числа обертонов и от их относительных интенсивностей.

Закон Вебера-Фехнера. Громкость звука

Использование логарифмической шкалы для оценки уровня интенсивности звука хорошо согласуется с психофизическим законом Вебера-Фехнера:

Если увеличивать раздражение в геометрической прогрессии (т.е. в одинаковое число раз), то ощущение этого раздражения возрастает в арифметической прогрессии (т.е. на одинаковую величину).

Именно логарифмическая функция обладает такими свойствами.

Громкостью звука называют интенсивность (силу) слуховых ощущений.

Ухо человека имеет различную чувствительность к звукам различных частот. Для учета этого обстоятельства можно выбрать некоторую опорную частоту, а восприятие остальных частот сравнивать с нею. По договоренности опорную частоту приняли равной 1 кГц (по этой причине и порог слышимости I 0 установлен для этой частоты).

Для чистого тона с частотой 1 кГц громкость (Е) принимают равной уровню интенсивности в децибелах:

Для остальных частот громкость определяют путем сравнения интенсивности слуховых ощущений с громкостью звука на опорной частоте.

Громкость звука равна уровню интенсивности звука (дБ) на частоте 1 кГц, вызывающего у «среднего» человека такое же ощущение громкости, что и данный звук.

Единицу громкости звука называют фоном.

Ниже приводится пример зависимости уровня громкости от частоты при уровне интенсивности 60 дБ.

Кривые равной громкости

Детальную связь между частотой, громкостью и уровнем интенсивности изображают графически с помощью кривых равной громкости (рис. 3.3). Эти кривые демонстрируют зависимость уровня интенсивности L дБ от частоты ν звука при заданной громкости звука.

Нижняя кривая соответствует порогу слышимости. Она позволяет найти пороговое значение уровня интенсивности (Е = 0) при заданной частоте тона.

С помощью кривых равной громкости можно найти громкость звука, если известны его частота и уровень интенсивности.

Звуковые измерения

Кривые равной громкости отражают восприятие звука средним человеком. Для оценки слуха конкретного человека применяется метод тональной пороговой аудиометрии.

Аудиометрия - метод измерения остроты слуха. На специальном приборе (аудиометре) определяется порог слухового ощущения, или порог восприятия, L П на разных частотах. Для этого с помощью звукового генератора создают звук заданной частоты и, увеличивая уро-

Рис. 3.3. Кривые равной громкости

вень интенсивности L, фиксируют пороговый уровень интенсивность L п, при котором у испытуемого появляются слуховые ощущения. Меняя частоту звука, получают экспериментальную зависимость L п (v), которую называют аудиограммой (рис. 3.4).

Рис. 3.4. Аудиограммы

Нарушение функции звуковоспринимающего аппарата может привести к тугоухости - стойкому снижению чувствительности к различным тонам и шепотной речи.

Международная классификация степеней тугоухости, основанная на усредненных значениях порогов восприятия на речевых частотах, приведена в табл. 3.2.

Для измерения громкости сложного тона или шума используют специальные приборы - шумомеры. Звук, принимаемый микрофоном, преобразуется в электрический сигнал, который пропускается через систему фильтров. Параметры фильтров подобраны так, что чувствительность шумомера на различных частотах близка к чувствительности человеческого уха.

3.4. Прохождение звука через границу раздела сред

При падении звуковой волны на границу раздела между двумя средами звук частично отражается, а частично проникает во вторую среду. Интенсивности отраженной и прошедшей через границу волн определяются соответствующими коэффициентами.

При нормальном падении звуковой волны на границу раздела сред справедливы следующие формулы:

Из формулы (3.9) видно, что чем сильнее различаются волновые сопротивления сред, тем большая доля энергии отражается на границе раздела. В частности, если величина х близка к нулю, то коэффициент отражения близок к единице. Например, для границы воздух-вода х = 3х10 -4 , а r = 99,88 %. То есть отражение является практически полным.

В таблице 3.3 приведены скорости и волновые сопротивления некоторых сред при 20 °С.

Отметим, что значения коэффициентов отражения и преломления не зависят от того порядка, в котором звук проходит данные среды. Например, для перехода звука из воздуха в воду значения коэффициентов такие же, как для перехода в обратном направлении.

3.5. Звуковые методы исследования

Звук может быть источником информации о состоянии органов человека.

1. Аускультация - непосредственное выслушивание звуков, возникающих внутри организма. По характеру таких звуков можно определить, какие именно процессы протекают в данной области тела, и в некоторых случаях установить диагноз. Приборы, применяемые для выслушивания: стетоскоп, фонендоскоп.

Фонендоскоп состоит из полой капсулы с передающей мембраной, которая прикладывается к телу, от нее идут резиновые трубки к уху врача. В полой капсуле возникает резонанс столба воздуха, вызывающий усиление звучания и, следовательно, улучшение выслушивания. Выслушиваются дыхательные шумы, хрипы, тоны сердца, шумы в сердце.

В клинике используются установки, в которых выслушивание осуществляется при помощи микрофона и динамика. Широко

применяется запись звуков с помощью магнитофона на магнитную ленту, что дает возможность их воспроизведения.

2. Фонокардиография - графическая регистрация тонов и шумов сердца и их диагностическая интерпретация. Запись осуществляется с помощью фонокардиографа, который состоит из микрофона, усилителя, частотных фильтров, регистрирующего устройства.

3. Перкуссия - исследование внутренних органов посредством постукивания по поверхности тела и анализа возникающих при этом звуков. Постукивание осуществляется либо с помощью специальных молоточков, либо при помощи пальцев.

Если в замкнутой полости вызвать звуковые колебания, то при определенной частоте звука воздух в полости начнет резонировать, усиливая тот тон, который соответствует размеру полости и ее положению. Схематично тело человека можно представить суммой разных объемов: газонаполненных (легкие), жидких (внутренние органы), твердых (кости). При ударе по поверхности тела возникают колебания с разными частотами. Часть из них погаснет. Другие совпадут с собственными частотами пустот, следовательно, усилятся и из-за резонанса будут слышны. По тону перкуторных звуков определяют состояние и топографию органа.

3.6. Факторы, определяющие профилактику шума.

Защита от шума

Для профилактики шума необходимо знать основные факторы, определяющие его воздействие на организм человека: близость источника шума, интенсивность шума, длительность воздействия, ограниченность пространства, в котором действует шум.

Длительное воздействие шума вызывает сложный симптоматический комплекс функциональных и органических изменений в организме (и не только органа слуха).

Воздействие длительного шума на ЦНС проявляется в замедлении всех нервных реакций, сокращении времени активного внимания, снижении работоспособности.

После длительного действия шума изменяется ритм дыхания, ритм сердечных сокращений, возникает усиление тонуса сосудистой системы, что приводит к повышению систолического и диастоли-

ческого уровня кровяного давления. Изменяется двигательная и секреторная деятельность желудочно-кишечного тракта, наблюдается гиперсекреция отдельных желез внутренней секреции. Имеет место повышение потливости. Отмечается подавление психических функций, особенно памяти.

Специфическое действие оказывает шум на функции органа слуха. Ухо, как и все органы чувств, способно адаптироваться к шуму. При этом под действием шума порог слышимости повышается на 10-15 дБ. После прекращения шумового воздействия нормальное значение порога слышимости восстанавливается только через 3-5 минут. При высоком уровне интенсивности шума (80-90 дБ) его утомляющее действие резко усиливается. Одной из форм расстройства функции органа слуха, связанной с длительным воздействием шума, является тугоухость (табл. 3.2).

Сильное воздействие как на физическое, так и на психологическое состояние человека оказывает рок-музыка. Современная рок-музыка создает шум в диапазонах от 10 Гц до 80 кГц. Экспериментально установлено, что если основной ритм, задаваемый ударными инструментами, имеет частоту 1,5 Гц и имеет мощное музыкальное сопровождение на частотах 15-30 Гц, то у человека наступает сильное возбуждение. При ритме с частотой 2 Гц при таком же сопровождении человек впадает в состояние, близкое наркотическому опьянению. На рок-концертах интенсивность звука может превышать 120 дБ, хотя человеческое ухо настроено наиболее благоприятно на среднюю интенсивность 55 дБ. При этом могут возникать контузии звуком, звуковые «ожоги», потеря слуха и памяти.

Шум оказывает вредное воздействие и на орган зрения. Так, длительное воздействие производственного шума на человека, находящегося в затемненном помещении, приводит к заметному снижению активности сетчатки глаза, от которой зависит работа глазного нерва, а следовательно, и острота зрения.

Защита от шума достаточно сложна. Это связано с тем, что вследствие сравнительно большой длины волны звук огибает препятствия (дифракция) и звуковая тень не образуется (рис. 3.5).

Кроме того, многие материалы, применяемые в строительстве и технике, имеют недостаточно высокий коэффициент поглощения звука.

Рис. 3.5. Дифракция звуковых волн

Эти особенности требуют специальных средств борьбы с шумами, к которым относятся подавление шумов, возникающих в самом источнике, использование глушителей, применение упругих подвесов, звукоизолирующих материалов, устранение щелей и т.п.

Для борьбы с шумами, проникающими в жилые помещения, большое значение имеют правильное планирование расположения зданий, учет розы ветров, создание защитных зон, в том числе и растительных. Растения - хороший гаситель шума. Деревья и кустарники могут снижать уровень интенсивности на 5-20 дБ. Эффективны зеленые полосы между тротуаром и мостовой. Лучше всего шум гасят липы и ели. Дома, находящиеся позади высокого хвойного заслона, могут быть избавлены от шумов улицы почти полностью.

Борьба с шумом не предполагает создания абсолютной тишины, так как при длительном отсутствии слуховых ощущений у человека могут возникнуть расстройства психики. Абсолютная тишина и длительный повышенный шум одинаково противоестественны для человека.

3.7. Основные понятия и формулы. Таблицы

Продолжение таблицы

Окончание таблицы

Таблица 3.1. Характеристики встречающихся звуков

Таблица 3.2. Международная классификация тугоухости

Таблица 3.3. Скорость звука и удельное акустическое сопротивление для некоторых веществ и тканей человека при t = 25 °С

3.8. Задачи

1. Звук, которому на улице соответствует уровень интенсивности L 1 = 50 дБ, слышен в комнате так, как звук с уровнем интенсивности L 2 = 30 дБ. Найти отношение интенсивностей звука на улице и в комнате.

2. Уровень громкости звука частотой 5000 Гц равен Е = 50 фон. Найти интенсивность этого звука, воспользовавшись кривыми равной громкости.

Решение

Из рисунка 3.2 находим, что на частоте 5000 Гц громкости Е =50 фон соответствует уровень интенсивности L = 47 дБ = 4,7 Б. Из формулы 3.4 находим: I = 10 4,7 I 0 = 510 -8 Вт/м 2 .

Ответ: I = 5?10 -8 Вт/м 2 .

3. Вентилятор создает звук, уровень интенсивности которого L = 60 дБ. Найти уровень интенсивности звука при работе двух рядом стоящих вентиляторов.

Решение

L 2 = lg(2x10 L) = lg2 + L = 0,3 + 6Б = 63 дБ (см. 3.6). Ответ: L 2 = 63 дБ.

4. Уровень громкости звука реактивного самолета на расстоянии 30 м от него равен 140 дБ. Каков уровень громкости на расстоянии 300 м? Отражением от земли пренебречь.

Решение

Интенсивность убывает пропорционально квадрату расстояния - уменьшается в 10 2 раз. L 1 - L 2 = 10xlg(I 1 /I 2) = 10x2 = 20 дБ. Ответ: L 2 = 120 дБ.

5. Отношение интенсивностей двух источников звука равно: I 2 /I 1 = 2. Чему равна разность уровней интенсивностей этих звуков?

Решение

ΔL = 10xlg(I 2 /I 0) - 10xlg(I 1 /I 0) = 10xlg(I 2 /I 1) = 10xlg2 = 3 дБ. Ответ: 3 дБ.

6. Каков уровень интенсивности звука с частотой 100 Гц, который имеет ту же громкость, что и звук с частотой 3 кГц и интенсивностью

Решение

Используя кривые равной громкости (рис. 3.3), найдем, что 25 дБ на частоте 3 кГц соответствуют громкости 30 фон. На частоте 100 Гц этой громкости соответствует уровень интенсивности 65 дБ.

Ответ: 65 дБ.

7. Амплитуда звуковой волны увеличилась в три раза. а) во сколько раз возросла ее интенсивность? б) на сколько децибел увеличился уровень громкости?

Решение

Интенсивность пропорциональна квадрату амплитуды (см. 3.6):

8. В лабораторном помещении, находящемся в цехе, уровень интенсивности шума достигал 80 дБ. С целью уменьшения шума было решено обить стены лаборатории звукопоглощающим материалом, уменьшающим интенсивность звука в 1500 раз. Какой уровень интенсивности шума станет после этого в лаборатории?

Решение

Уровень интенсивности звука в децибелах: L = 10x lg(I/I 0). При изменении интенсивности звука изменение уровня интенсивности звука будет равно:

9. Импедансы двух сред различаются в 2 раза: R 2 = 2R 1 . Какая часть энергии отражается от границы раздела и какая часть энергии переходит во вторую среду?

Решение

Используя формулы (3.8 и 3.9) найдем:

Ответ: 1/9 часть энергии отражается, а 8/9 переходит во вторую среду.

С помощью данного видеурока вы сможете изучить тему «Источники звука. Звуковые колебания. Высота, тембр, громкость». На этом занятии вы узнаете, что такое звук. Также мы рассмотрим диапазоны звуковых колебаний, воспринимаемые человеческим слухом. Определим, что может быть источником звука и какие необходимы условия для его возникновения. Также изучим такие характеристики звука, как высота, тембр и громкость.

Тема урока посвящена источникам звука, звуковым колебаниям. Поговорим мы и о характеристиках звука - высоте, громкости и тембре. Прежде чем говорить о звуке, о звуковых волнах, давайте вспомним, что механические волны распространяются в упругих средах. Часть продольных механических волн, которая воспринимается человеческими органами слуха, называется звуком, звуковыми волнами. Звук - это воспринимаемые человеческими органами слуха механические волны, которые вызывают звуковые ощущения .

Опыты показывают, что человеческое ухо, органы слуха человека воспринимают колебания частотами от 16 Гц до 20000 Гц. Именно этот диапазон мы и называем звуковым. Конечно, существуют волны, частота которых меньше 16 Гц (инфразвук) и больше 20000 Гц (ультразвук). Но этот диапазон, эти разделы человеческим ухом не воспринимаются.

Рис. 1. Диапазон слышимости человеческого уха

Как мы говорили, области инфразвука и ультразвука человеческими органами слуха не воспринимаются. Хотя могут восприниматься, например, некоторыми животными, насекомыми.

Что такое ? Источниками звука могут быть любые тела, которые совершают колебания со звуковой частотой (от 16 до 20000 Гц)

Рис. 2. Зажатая в тиски колеблющаяся линейка может быть источником звука

Обратимся к опыту и посмотрим, как образуется звуковая волна. Для этого нам потребуется металлическая линейка, которую мы зажмем в тиски. Теперь, воздействуя на линейку, мы сможем наблюдать колебания, но никакого звука не слышим. И тем не менее вокруг линейки создается механическая волна. Обратите внимание, когда линейка смещается в одну сторону, здесь образуется уплотнение воздуха. В другую сторону - тоже уплотнение. Между этими уплотнениями образуется разряжение воздуха. Продольная волна - это и есть звуковая волна, состоящая из уплотнений и разряжений воздуха . Частота колебаний линейки в данном случае меньше звуковой частоты, поэтому мы не слышим этой волны, этого звука. На основе опыта, который мы только что пронаблюдали, в конце XVIII века был создан прибор, который называется камертон.

Рис. 3. Распространение продольных звуковых волн от камертона

Как мы убедились, звук появляется в результате колебаний тела со звуковой частотой. Распространяются звуковые волны во все стороны. Между слуховым аппаратом человека и источником звуковых волн обязательно должна быть среда. Эта среда может газообразной быть, жидкой, твердой, но это обязательно должны быть частицы, способные передавать колебания. Процесс передачи звуковых волн должен обязательно происходить там, где есть вещество. Если вещества нет, никакого звука мы не услышим.

Для существования звука необходимы:

1. Источник звука

2. Среда

3. Слуховой аппарат

4. Частота 16-20000 Гц

5. Интенсивность

Теперь перейдем к обсуждению характеристик звука. Первая - это высота звука. Высота звука - характеристика, которая определяется частотой колебаний . Чем больше частота у тела, которое производит колебания, тем звук будет выше. Давайте вновь обратимся к линейке, зажатой в тиски. Как мы уже говорили, мы видели колебания, но не слышали звука. Если теперь длину линейки сделать меньше, то мы будем слышать звук, но увидеть колебания будет гораздо сложнее. Посмотрите на линейку. Если мы подействуем на нее сейчас, звука никакого мы не услышим, но зато наблюдаем колебания. Если укоротим линейку, мы услышим звук определенной высоты. Мы можем сделать длину линейки еще короче, тогда мы услышим звук еще большей высоты (частоты). То же самое мы можем пронаблюдать и с камертонами. Если мы возьмем большой камертон (он еще называется демонстрационный) и ударим по ножкам такого камертона, то можем пронаблюдать колебание, но звука не услышим. Если возьмем другой камертон, то, ударив по нему, услышим определенный звук. И следующий камертон, настоящий настроечный камертон, который используется для настройки музыкальных инструментов. Он издает звук, соответствующий ноте ля, или, как говорят еще, 440 Гц.

Следующая характеристика - тембр звука. Тембром называется окраска звука . Как можно проиллюстрировать эту характеристику? Тембр - это то, чем отличаются два одинаковых звука, исполненные различными музыкальными инструментами. Вы все знаете, что нот у нас всего семь. Если мы услышим одну и ту же ноту ля, взятую на скрипке и на фортепиано, то мы отличим их. Мы сразу сможем сказать, какой инструмент этот звук создал. Именно эту особенность - окраску звука - и характеризует тембр. Нужно сказать, что тембр зависит от того, какие воспроизводятся звуковые колебания, кроме основного тона. Дело в том, что произвольные звуковые колебания довольно сложные. Они состоят из набора отдельных колебаний, говорят спектра колебаний . Именно воспроизведение дополнительных колебаний (обертонов) и характеризует красоту звучания того или иного голоса или инструмента. Тембр является одним из основных и ярких проявлений звука.

Еще одна характеристика - громкость. Громкость звука зависит от амплитуды колебаний . Давайте посмотрим и убедимся, что громкость связана с амплитудой колебаний. Итак, возьмем камертон. Сделаем следующее: если ударить по камертону слабо, то амплитуда колебаний будет небольшая и звук будет тихий. Если теперь по камертону ударить сильнее, то и звук гораздо громче. Это связано с тем, что амплитуда колебаний будет гораздо больше. Восприятие звука - вещь субъективная, зависит от того, каков слуховой аппарат, каково самочувствие человека.

Список дополнительной литературы:

А так ли хорошо знаком вам звук? // Квант. — 1992. — № 8. — C. 40-41. Кикоин А.К. О музыкальных звуках и их источниках // Квант. — 1985. — № 9. — С. 26-28. Элементарный учебник физики. Под ред. Г.С. Ландсберга. Т. 3. - М., 1974.

Амплитуда - модуль максимального отклонения тела от положения равновесия.Амплитуда звуковых волн и аудиосигналов обычно относится к амплитуде давления воздуха в волне, но иногда описывается как амплитуда смещения относительно равновесия (воздуха или диафрагмы говорящего). Её логарифм обычно измеряется в децибелах (дБ ).Форма изменения амплитуды называется огибающей волной.Другое определение амплитуды: амплитуда - наибольшее значение, которое принимает какая-либо величина, изменяющаяся по гармоническому закону.

  • Максимальное значение сигнала - наибольшее мгновенное значение сигнала на протяжении заданного интервала времени
  • Минимальное значение сигнала - наименьшее мгновенное значение сигнала на протяжении заданного интервала времени
  • Размах сигнала - разность между максимальным и минимальным значениями сигнала на протяжении заданного интервала времени

Амплитуда называется постоянной , если её величина не зависит от времени и пространственного положения (в этом случае волна называется незатухающей).

Виды амплитуды:

  • пиковая амплитуда (пик, peak amplitude, peak) - это отклонение от некоего среднего значения симметричных периодических волн (вроде синусоидальных, прямоугольных или пилообразных);
  • пик-пик амплитуда, размах (пик-пик, peak-to-peak amplitude, pp) - это разница между положительным и отрицательным пиками;
  • среднеквадратичная амплитуда (root mean square, RMS) - это квадратный корень среднего по времени значения квадрата отклонения графика от горизонтальной оси асимметричных волн (периодических импульсов в одном направлении; сложных волн, особенно для неповторяющихся сигналов вроде шума). Пиковая амплитуда в этом случае становится неочевидной и обычно не используется. Например, мощность, переносимая акустической или электромагнитной волной или электрическим сигналом, пропорциональна квадрату среднеквадратичной амплитуды (и в общем случае не пропорциональна квадрату пиковой амплитуды). Спектр (лат. spectrum от лат. specter - виде́ние, призрак) - распределение значений физической величины (обычно энергии, частоты или массы). Графическое представление такого распределения называется спектральной диаграммой. Обычно человек слышит звуки, передаваемые по воздуху, в диапазоне частот от 16-20 Гц до 15-20 кГц . Звук ниже диапазона слышимости человека называют инфразвуком; выше: до 100 кГц, - ультразвуком, от 100 кГц - гиперзвуком. Среди слышимых звуков следует также особо выделить фонетические, речевые звуки и фонемы (из которых состоит устная речь) и музыкальные звуки (из которых состоит музыка).

    Различают продольные и поперечные звуковые волны в зависимости от соотношения направления распространения волны и направления механических колебаний частиц среды распространения.

  • Понятие о звуке.

    Звуковые волны могут служить примером колебательного процесса. Всякое колебание связано с нарушением равновесного состояния системы и выражается в отклонении её характеристик от равновесных значений с последующим возвращением к исходному значению. Для звуковых колебаний такой характеристикой является давление в точке среды, а её отклонение - звуковым давлением(звуково́е давле́ние - переменное избыточное давление, возникающее в упругой среде при прохождении через неё звуковой волны.)

    Если произвести резкое смещение частиц упругой среды в одном месте, например, с помощью поршня, то в этом месте увеличится давление. Благодаря упругим связям частиц давление передаётся на соседние частицы, которые, в свою очередь, воздействуют на следующие, и область повышенного давления как бы перемещается в упругой среде. За областью повышенного давления следует область пониженного давления, и, таким образом, образуется ряд чередующихся областей сжатия и разряжения, распространяющихся в среде в виде волны. Каждая частица упругой среды в этом случае будет совершать колебательные движения.

    В жидких и газообразных средах, где отсутствуют значительные колебания плотности, акустические волны имеют продольный характер, то есть направление колебания частиц совпадает с направлением перемещения волны. В твёрдых телах, помимо продольных деформаций, возникают также упругие деформации сдвига, обусловливающие возбуждение поперечных (сдвиговых) волн; в этом случае частицы совершают колебания перпендикулярно направлению распространения волны. Скорость распространения продольных волн значительно больше скорости распространения сдвиговых волн.

    Физические параметры звука

    Колебательная скорость измеряется в м/с или см/с. В энергетическом отношении реальные колебательные системы характеризуются изменением энергии вследствие частичной её затраты на работу против сил трения и излучение в окружающее пространство. В упругой среде колебания постепенно затухают. Для характеристики затухающих колебаний(затухающие колебания - колебания, энергия которых уменьшается с течением времени.) используются коэффициент затухания (S), логарифмический декремент (D) и добротность (Q). .

    Коэффициент затухания отражает быстроту убывания амплитуды с течением времени. Если обозначить время, в течение которого амплитуда уменьшается в е = 2,718 раза, через τ , то:

    Уменьшение амплитуды за один цикл характеризуется логарифмическим декрементом. Логарифмический декремент равен отношению периода колебаний ко времени затухания τ :

    Если на колебательную систему с потерями действовать периодической силой, то возникают вынужденные колебания(в ынужденные колебания - колебания, происходящие под воздействием внешних сил, меняющихся во времени), характер которых в той или иной мере повторяет изменения внешней силы. Частота вынужденных колебаний не зависит от параметров колебательной системы. Напротив, амплитуда зависит от массы, механического сопротивления и гибкости системы. Такое явление, когда амплитуда колебательной скорости достигает максимального значения, называется механическим резонансом. При этом частота вынужденных колебаний совпадает с частотой собственных незатухающих колебаний механической системы.

    При частотах воздействия, значительно меньших резонансной, внешняя гармоническая сила уравновешивается практически только силой упругости. При частотах возбуждения, близких к резонансной, главную роль играют силы трения. При условии, когда частота внешнего воздействия значительно больше резонансной, поведение колебательной системы зависит от силы инерции или массы.

    Свойство среды проводить акустическую энергию, в том числе и ультразвуковую, характеризуется акустическим сопротивлением. Акустическое сопротивление среды выражается отношением звуковой плотности к объёмной скорости ультразвуковых волн. Удельное акустическое сопротивление среды устанавливается соотношением амплитуды звукового давления в среде к амплитуде колебательной скорости её частиц. Чем больше акустическое сопротивление, тем выше степень сжатия и разряжения среды при данной амплитуде колебания частиц среды. Численно, удельное акустическое сопротивление среды (Z) находится как произведение плотности среды (ρ ) на скорость (с) распространения в ней ультразвуковых волн.

    Z = ρc

    Удельное акустическое сопротивление измеряется в паскаль-секунда на метр (Па·с/м) или дин с/см³ (СГС); 1 Па·с/м = 10 −1 дин с/см³.

    Значение удельного акустического сопротивления среды часто выражается в г/с·см², причём 1 г/с·см² = 1 дин с/см³. Акустическое сопротивление среды определяется поглощением, преломлением и отражением ультразвуковых волн.

    Звуковое или акустическое давление в среде представляет собой разность между мгновенным значением давления в данной точке среды при наличии звуковых колебаний и статического давления в той же точке при их отсутствии. Иными словами, звуковое давление есть переменное давление в среде, обусловленное акустическими колебаниями. Максимальное значение переменного акустического давления (амплитуда давления) может быть рассчитано через амплитуду колебания частиц:

    P = 2πf ρc A

    где Р - максимальное акустическое давление (амплитуда давления);

  • f - частота;
  • с - скорость распространения ультразвука;
  • ρ - плотность среды;
  • А - амплитуда колебания частиц среды.

На расстоянии в половину длины волны (λ/2) амплитудное значение давления из положительного становится отрицательным, то есть разница давлений в двух точках, отстоящих друг от друга на λ/2 пути распространения волны, равна 2Р.

Для выражения звукового давления в единицах СИ используется Паскаль (Па), равный давлению в один ньютон на метр квадратный (Н/м²). Звуковое давление в системе СГС измеряется в дин/см²; 1 дин/см² = 10 −1 Па = 10 −1 Н/м². Наряду с указанными единицами часто пользуются внесистемными единицами давления - атмосфера (атм) и техническая атмосфера (ат), при этом 1 ат = 0,98×10 6 дин/см² = 0,98×10 5 Н/м². Иногда применяется единица, называемая баром или микробаром (акустическим баром); 1 бар = 10 6 дин/см².

Давление, оказываемое на частицы среды при распространении волны, является результатом действия упругих и инерционных сил. Последние вызываются ускорениями, величина которых также растёт в течение периода от нуля до максимума (амплитудное значение ускорения). Кроме того, в течение периода ускорение меняет свой знак.

Максимальные значения величин ускорения и давления, возникающие в среде при прохождении в ней ультразвуковых волн, для данной частицы не совпадают во времени. В момент, когда перепад ускорения достигает своего максимума, перепад давления становится равным нулю. Амплитудное значение ускорения (а) определяется выражением:

a = ω2A = (2πf )2A

Если бегущие ультразвуковые волны наталкиваются на препятствие, оно испытывает не только переменное давление, но и постоянное. Возникающие при прохождении ультразвуковых волн участки сгущения и разряжения среды создают добавочные изменения давления в среде по отношению к окружающему её внешнему давлению. Такое добавочное внешнее давление носит название давления излучения (радиационного давления). Оно служит причиной того, что при переходе ультразвуковых волн через границу жидкости с воздухом образуются фонтанчики жидкости и происходит отрыв отдельных капелек от поверхности. Этот механизм нашёл применение в образовании аэрозолей лекарственных веществ. Радиационное давление часто используется при измерении мощности ультразвуковых колебаний в специальных измерителях - ультразвуковых весах.

  • Скорость звука скорость распространения упругих волн в среде - как продольных в газах, жидкостях и твердых телах, так и поперечных (сдвиговых) в твердой среде. Определяется упругостью и плотностью среды. Скорость звука в газах, жидкостях и изотропных твёрдых средах обычно величина постоянная для данного вещества, в монокристаллах зависит от направления распространения волны и при заданных внешних условиях обычно не зависит от частоты волны и её амплитуды. В тех случаях, когда это не выполняется и скорость звука зависит от частоты, говорят о дисперсии звука. Впервые измерена Уильямом Дерхамом.

    Как правило, в газах скорость звука меньше, чем в жидкостях, а в жидкостях скорость звука меньше, чем в твёрдых телах, поэтому при сжижении газа скорость звука возрастает.

    Генерация Звука
Обычно для генерации звука применяются колеблющиеся тела различной природы, вызывающие колебания окружающего воздуха. Примером такой генерации может служить использование голосовых связок, динамиков или камертона. Большинство музыкальных инструментов основано на том же принципе. Исключением являются духовые инструменты, в которых звук генерируется за счёт взаимодействия потока воздуха с неоднородностями в инструменте. Для создания когерентного звука применяются так называемые звуковые или фононные лазеры.

Громкость звука

Гро́мкость зву́ка - субъективное восприятие силы звука (абсолютная величина слухового ощущения). Громкость главным образом зависит от звукового давления, амплитуды и частоты звуковых колебаний. Также на громкость звука влияют его спектральный состав, локализация в пространстве, тембр, длительность воздействия звуковых колебаний и другие факторы (см.).

Единицей абсолютной шкалы громкости является сон . Громкость в 1 сон - это громкость непрерывного чистого синусоидального тона частотой 1 кГц, создающего звуковое давление 2 мПа.

Уровень громкости звука - относительная величина. Она выражается в фонах и численно равна уровню звукового давления (в децибелах - дБ), создаваемого синусоидальным тоном частотой 1 кГц такой же громкости, как и измеряемый звук (равногромким данному звуку).

Звук Громкость, дБ:
Порог слышимости 0
Тиканье наручных часов 10
Шепот 20
Звук настенных часов 30
Приглушенный разговор 40
Тихая улица 50
Обычный разговор 60
Шумная улица 70
Опасный для здоровья уро­вень 75
Пневматический молоток 90
Кузнечный цех 100
Громкая музыка 110
Болевой порог 120
Сирена 130
Реактивный самолет 150
Смертельный уровень 180
Шумовое оружие 200

Лабораторная работа №5

Аудиометрия

Студент должен знать : что называется звуком, природу звука, источники звука; физические характеристики звука (частота, амплитуда, скорость, интенсивность, уровень интенсивности, давление, акустический спектр); физиологические характеристики звука (высота, громкость, тембр, минимальная и максимальная частоты колебаний, воспринимаемые данным человеком, порог слышимости, порог болевого ощущения) их связь с физическими характеристиками звука; слуховой аппарат человека, теории восприятия звука; коэффициент звукоизоляции; акустический импеданс, поглощение и отражение звука, коэффициенты отражения и проникновения звуковых волн, реверберация; физические основы звуковых методов исследования в клинике, понятие об аудиометрии.

Студент должен уметь: с помощью звукового генератора снимать зависимость порога слышимости от частоты; определять минимальную и максимальную, воспринимаемые Вами частоты колебаний, снимать аудиограмму с помощью аудиометра.

Краткая теория

Звук. Физические характеристики звука.

Звуком называются механические волны с частотой колебаний частиц упругой среды от 20 Гц до 20000 Гц, воспринимаемые человеческим ухом.



Физическими называют те характеристики звука, которые существуют объективно. Они не связаны с особенностями ощущения человеком звуковых колебаний. К физическим характеристикам звука относятся частота, амплитуда колебаний, интенсивность, уровень интенсивности, скорость распространения звуковых колебаний, звуковое давление, акустический спектр звука, коэффициенты отражения и проникновения звуковых колебаний и др. Кратко рассмотрим их.

1. Частота колебаний . Частотой звуковых колебаний называется число колебаний частиц упругой среды (в которой распространяются звуковые колебания) в единицу времени. Частота звуковых колебаний лежит в пределах 20 - 20000 Гц. Каждый конкретный человек воспринимает определенный диапазон частот (обычно несколько выше 20 Гц и ниже 20000 Гц).

2. Амплитудой звукового колебания называется наибольшее отклонение колеблющихся частиц среды (в которой распространяется звуковое колебание) от положения равновесия.

3. Интенсивностью звуковой волны (или силой звука ) называется физическая величина, численно равная отношению энергии, переносимой звуковой волной в единицу времени через единицу площади поверхности, ориентированной перпендикулярно вектору скорости звуковой волны, то есть:

где W - энергия волны, t - время переноса энергии через площадку площадью S .

Единица интенсивности: [I ] = 1Дж/(м 2 с) = 1Вт/м 2 .

Обратим внимание на то, что энергия и соответственно интенсивность звуковой волны прямо пропорциональны квадрату амплитуды «А » и частоты «ω » звуковых колебаний:

W ~ A 2 и I ~ A 2 ; W ~ ω 2 и I ~ ω 2 .

4. Скоростью звука называется скорость распространения энергии звукового колебания. Для плоской гармонической волны фазовая скорость (скорость распространения фазы колебания (фронта волны), например, максимума или минимума, т.е. сгустка или разряжения среды) равна скорости волны. Для сложного колебания (по теореме Фурье можно представить в виде суммы гармонических колебаний) вводится понятие групповой скорости – скорость распространения группы волн, с которой переносится энергия данной волной.

Скорость звука в любой среде можно найти по формуле:

где Е - модуль упругости среды (модуль Юнга), r - плотность среды.

С увеличением плотности среды (например, в 2 раза) модуль упругости Е возрастает в большей степени (более чем в 2 раза), поэтому с увеличением плотности среды скорость звука возрастает. Например, скорость звука в воде равна ≈ 1500 м/с, в стали - 8000 м/с.

Для газов формулу (2) можно преобразовать и получить в следующем виде:

(3)

где g = С Р / С V - отношение молярных или удельных теплоемкостей газа при постоянном давлении (С Р ) и при постоянном объеме (С V ).

R - универсальная газовая постоянная (R=8,31 Дж/моль·К );

Т - абсолютная температура по шкале Кельвина (T=t o C+273 );

М - молярная масса газа (для нормальной смеси газов воздуха

М=29×10 -3 кг/моль ).

Для воздуха при Т=273К и нормальном атмосферном давлении скорость звука равна υ=331,5 » 332 м/с . Следует заметить, что интенсивность волны (векторная величина) часто выражают через скорость волны :

или ,(4)

где S×l - объем, u=W/ S×l - объемная плотность энергии. Вектор в уравнении (4) называют вектором Умова .

5. Звуковым давлением называется физическая величина, численно равная отношению модуля силы давления F колеблющихся частиц среды, в которой распространяется звук, к площади S перпендикулярно ориентированной площадки по отношению к вектору силы давления.

P = F/S [P ]= 1Н/м 2 = 1Па (5)

Интенсивность звуковой волны прямо пропорциональна квадрату звукового давления:

I = Р 2 /(2r υ) , (7)

где Р - звуковое давление, r - плотность среды, υ - скорость звука в данной среде.

6.Уровень интенсивности . Уровнем интенсивности (уровнем силы звука) называется физическая величина, численно равная:

L=lg(I/I 0) , (8)

где I - интенсивность звука, I 0 =10 -12 Вт/м 2 - наименьшая интенсивность, воспринимаемая человеческим ухом на частоте 1000 Гц.

Уровень интенсивности L , исходя из формулы (8), измеряют в белах (Б). L = 1 Б , если I=10I 0 .

Максимальная интенсивность, воспринимаемая человеческим ухом I max =10 Вт/м 2 , т.е. I max / I 0 =10 13 или L max =13 Б.

Чаще уровень интенсивности измеряют в децибелах (дБ ):

L дБ =10 lg(I/I 0) , L=1 дБ при I=1,26I 0 .

Уровень силы звука можно находить через звуковое давление.

Так как I ~ Р 2 , то L(дБ) = 10lg(I/I 0) = 10 lg(P/P 0) 2 = 20 lg(P/P 0) , где P 0 = 2×10 -5 Па (при I 0 =10 -12 Вт/м 2).

7.Тоном называется звук, являющийся периодическим процессом (периодические колебания источника звука совершаются не обязательно по гармоническому закону). Если источник звука совершает гармоническое колебание x=ASinωt , то такой звук называют простым или чистым тоном. Негармоническому периодическому колебанию соответствует сложный тон, который можно по теореме Фурьне представить в виде совокупности простых тонов с частотами n о (основной тон) и 2n о , 3n о и т.д., называемых обертонами с соответствующими амплитудами.

8.Акустическим спектром звука называется совокупность гармонических колебаний с соответствующими частотами и амплитудами колебаний, на которые можно разложить данный сложный тон. Спектр сложного тона линейчатый, т.е. частоты n о, 2n о и т.д.

9. Шумом (звуковым шумом) называют звук, который представляет собой сложные, неповторяющиеся во времени колебания частиц упругой среды. Шум представляет собой сочетание беспорядочно изменяющихся сложных тонов. Акустический спектр шума состоит практически из любых частот звукового диапазона, т.е. акустический спектр шума - сплошной.

Звук может быть и в виде звукового удара. Звуковой удар - это кратковременное (обычно интенсивное) звуковое воздействие (хлопок, взрыв и т.п.).

10.Коэффициенты проникновения и отражения звуковой волны. Важной характеристикой среды, определяющей отражение и проникновение звука является волновое сопротивление (акустический импеданс) Z=r υ , где r - плотность cреды, υ - скорость звука в среде.

Если плоская волна падает, например, нормально к границе раздела двух сред, то звук частично проходит во вторую среду, а часть звука отражается. Если падает звук интенсивностью I 1 , проходит - I 2 , отражается I 3 =I 1 - I 2 , то:

1) коэффициентом проникновения звуковой волны b называется b=I 2 /I 1 ;

2) коэффициентом отражения a называется:

a= I 3 /I 1 =(I 1 -I 2)/I 1 =1-I 2 /I 1 =1-b.

Релей показал, что b =

Если υ 1 r 1 = υ 2 r 2 , то b=1 (максимальное значение), при этом a=0 , т.е. отраженная волна отсутствует.

Если Z 2 >>Z 1 или υ 2 r 2 >> υ 1 r 1 , то b » 4 υ 1 r 1 / υ 2 r 2 . Так, например, если звук падает из воздуха в воду, то b=4(440/1440000)=0,00122 или 0,122% интенсивности падающего звука проникает из воздуха в воду.

11. Понятие о реверберации . Что представляет собой реверберация? В закрытом помещении звук многократно отражается от потолка, стен, пола и т. п. с постепенно уменьшающейся интенсивностью. Поэтому после прекращения действия источника звука в течение некоторого времени слышен звук за счет многократного отражения (гул).

Реверберацией называется процесс постепенного затухания звука в закрытых помещениях после прекращения излучения источником звуковых волн. Временем реверберации называется время, в течение которого интенсивность звука при реверберации снижается в 10 6 раз. При проектировании учебных аудиторий, концертных залов и т.п. учитывают необходимость получения определенного времени (интервала времени) реверберации. Так, например, для Колонного зала Дома Союзов и Большого театра г. Москвы время реверберации для пустых помещений соответственно равно 4,55 с и 2,05 с, для заполненных – 1,70 с и 1,55 с.