Анализируя данные задачи, наблюдая, что общего в задачах с точки зрения математики, в чем различие, найти неординарный способ решения задач, создать копилку приёмов решения задач, обучиться решению одной задачи различными способами.Тренажёр задач, сгруппированных единой тематикой "Арифметические способы решения задач", задачи для работы в группе и для индивидуальной работы.


«задачи для тренажера методичка»

Тренажёр: «Арифметические способы решения задач»

«Сравнение чисел по сумме и разности».

    В двух корзинах 80 боровиков. В первой корзине на 10 боровиков меньше, чем во второй. Сколько боровиков в каждой корзине?

    В швейное ателье поступило 480 м джинсовой ткани и драпа. Джинсовой ткани поступило на 140 м больше, чем драпа. Сколько метров джинсовой ткани поступило в ателье?

    Модель телебашни состоит из двух блоков. Нижний блок на 130 см короче верхнего. Какова высота верхнего и нижнего блоков, если высота башни 4 м 70 см?

    В двух коробках 16 кг печенья. Найдите массу печенья в каждой коробке, если в одной из них печенья на 4 кг больше.

Задача из «Арифметики» Л. Н. Толстого.

    а) У двух мужиков 35 овец. У одного на 9 овец больше, чем у другого. Сколько овец у каждого?

б) У двух мужиков 40 овец, а у одного меньше против другого на 6 овец. Сколько овец у каждого мужика?

    В гараже стояли 23 легковых машин и мотоциклов с коляской. У машин и мотоциклов 87 колес. Сколько в гараже мотоциклов, если в каждую коляску положили запасное колесо?

«Круги Эйлера».

    В доме 120 жильцов, у некоторых из них есть собаки и кошки. На рисунке круг С изображает жильцов с собаками, круг К жильцов с кошками. Сколько жильцов имеют и собак, и кошек? Сколько жильцов имеют только собак? Сколько жильцов имеют только кошек? Сколько жильцов не имеют ни собак, ни кошек?

    Из 52 школьников 23 занимаются волейболом и 35 баскетболом, а 16 – и волейболом, и баскетболом. Остальные не занимаются ни одним из этих видов спорта. Сколько школьников не занимаются ни одним из этих видов спорта?

    На рисунке круг А изображает всех сотрудников университета, знающих английский язык, круг Н – знающих немецкий и круг Ф – французский. Сколько сотрудников университета знает: а) 3 языка; б) английский и немецкий; в) французский? Сколько всего сотрудников университета? Сколько из них не говорит по – французски?

    В международной конференции участвовало 120 человек. Из них 60 владеют русским языком, 48 – английским, 32 – немецким, 21 – русским и немецким, 19 – английским и немецким, 15 – русским и английским, а 10 человек владели всеми тремя языками. Сколько участников конференции не владеют ни одним из этих языков?

    Поют в хоре и занимаются танцами 82 студента, занимаются танцами и художественной гимнастикой 32 студента, а поют в хоре и занимаются художественной гимнастикой 78 студентов. Сколько студентов поют в хоре, занимаются танцами и художественной гимнастикой отдельно, если известно, что каждый студент занимается только чем-то одним?

    Каждая семья, живущая в нашем доме, выписывает или газету, или журнал, или и то и другое. 75 семей выписывают газету, а 27 семей выписывают журнал, и лишь 13 семей выписывают и журнал и газету. Сколько семей живет в нашем доме?

«Метод уравнивания данных».

    В 3 маленьких и 4 больших букетах 29 цветков, а в 5 маленьких и 4 больших букетах 35 цветков. Сколько цветков в каждом букете в отдельности?

    Масса 2 плиток шоколада – большой и маленькой – 120 г, а 3 больших и 2 маленьких – 320 г. Какова масса каждой плитки?

    5 яблок и 3 груши весят 810 г, а 3 яблока и 5 груш весят 870 г. Сколько весит одно яблока? Одна груша?

    Четыре утенка и пять гусят весят 4кг 100г, пять утят и четыре гусенка весят 4 кг. Сколько весит один утенок?

    Для одной лошади и двух коров выдают ежедневно 34 кг сена, а для двух лошадей и одной коровы - 35 кг сена. Сколько сена выдают одной лошади и сколько одной корове?

    3 красных кубика и 6 синих кубиков стоят 165тг руб. Причём, пять красных дороже двух синих на 95 тг. Сколько стоит каждый кубик?

    2 альбома для рисования и 3 альбома для марок вместе стоят 160 руб., причём 3 альбома для рисования стоят на 45 руб. дороже двух альбомов для марок.

«Графы».

    Сережа решил подарить маме на день рождения букет цветов (розы, тюльпаны или гвоздики) и поставить их или в вазу, или в кувшин. Сколькими способами он может это сделать?

    Сколько трехзначных чисел можно составить из цифр 0, 1, 3, 5, если цифры в записи числа не повторяются?

    В среду в 5 классе пять уроков: математика, физкультура, история, русский язык и естествознание. Сколько различных вариантов расписания на среду можно составить?

«Старинный способ решения задач на смешение веществ».

    Как смешать масла? У некоторого человека были на продажу масла двух сортов: одно ценою 10 гривен за ведро, другое же 6 гривен за ведро. Захотелось ему сделать из этих двух масел, смешав их, масло ценою 7 гривен за ведро. Какие части этих двух масел нужно взять, чтобы получить ведро масла стоимостью 7 гривен?

    Сколько надо взять карамели по цене 260 тг за 1 кг и по цене 190 тг за 1 кг, чтобы составить 21 кг смеси по цене 210 тг за килограмм?

    Некто имеет чай трех сортов – цейлонский по 5 гривен за фунт, индийский по 8 гривен за фунт и китайский по 12 гривен за фунт. В каких долях нужно смешать эти три сорта, чтобы получить чай стоимостью 6 гривен за фунт?

    Некто имеет серебро разных проб: одно – 12 – ой пробы, другое – 10 – ой пробы, третье – 6 – ой пробы. Сколько какого серебра надо взять, чтобы получить 1 фунт серебра 9 – ой пробы?

    Купец купил 138 аршин черного и синего сукна за 540 руб. Спрашивается, сколько аршин купил он и того и другого, если синее стоило 5 руб. за аршин, а черное - 3 руб.?

Разные задачи.

    Для новогодних подарков купили 87 кг фруктов, причем яблок было на 17 кг больше, чем апельсинов. Сколько яблок и сколько апельсинов купили?

    На новогодней елке детей в карнавальных костюмах снежинок было в 3 раза больше, чем в костюмах Петрушек. Сколько было детей в костюмах Петрушек, если их было на 12 меньше?

    Маша получила в 2 раза меньше новогодних поздравлений, чем Коля. Сколько поздравлений получил каждый, если всего их было 27?(9 и 18).

    Для новогодних призов было куплено 28 кг конфет. Конфеты “Ласточка” составили 2 части, “Муза” - 3 части, “Ромашка” - 2 части. Сколько конфет каждого сорта купили?(8, 8, 12).

    На складе есть 2004 кг муки. Можно ли её разложить в мешки массой в 9 кг и массой в 18 кг?

    В магазине "Все для чая"" есть 5 разных чашек и 3 разных блюдца. Сколькими способами можно купить чашку с блюдцем?

    Лошадь съедает стог сена за 2 дня, корова - за 3, овца - за 6. За сколько дней они съедят стог, если будут есть его вместе?

Просмотр содержимого документа
«конспект урока ариф сп»

« Арифметические способы решения текстовых задач».

Человеку, изучающему математику, часто полезнее решить одну и ту же задачу тремя различными способами, чем решить три – четыре различные задачи. Решая одну задачу различными способами, можно путем сравнения выяснить, какой из них короче и эффективнее. Так вырабатывается опыт.

У.У.Сойер

Цель урока : использовать знания, полученные на предыдущих уроках, проявить фантазию, интуицию, воображение, смекалку для решения тестовых задач различными способами.

Задачи урока: образовательные : анализируя данные задачи, наблюдая, что общего в задачах с точки зрения математика, в чем различие, найти неординарный способ решения задач, создать копилку приёмов решения задач, обучиться решению одной задачи различными способами.

Развивающие : ощутить необходимость самореализации, оказавшись в определенной ролевой ситуации.

Воспитательные: развивают личностные качества, формируют коммуникативную культуру.

Средства обучения : тренажёр задач, сгруппированных единой тематикой "Арифметические способы решения задач", задачи для работы в группе и для индивидуальной работы.

ХОД УРОКА.

I. Организационный момент

Здравствуйте, ребята. Садитесь. Сегодня у нас занятие по теме «Арифметические способы решения текстовых задач».

II. Актуализация знаний.

Математика - одна из древних и важных наук. Многими математическими знаниями люди пользовались еще в глубокой древности - тысячи лет назад. Они были необходимы купцам и строителям, воинам и землемерам, жрецам и путешественникам.

И в наши дни ни одному человеку не обойтись в жизни без хорошего знания математики. Основа хорошего понимания математики – умение считать, думать, рассуждать, находить удачные решения задач.

Сегодня мы рассмотрим арифметические способы решения текстовых задач, разберем задачи старинные, дошедшие до нас из разных стран и времен, задачи на уравнивания, на сравнение по сумме и разности и другие.

Цель занятия – вовлечь вас в удивительный мир красоты, богатства и многообразия – мир интересных задач. А, значит, познакомить с некоторыми арифметическими способами, приводящими к весьма изящным и поучительным решениям.

Задача – это почти всегда поиск, раскрытие каких – то свойств и отношений, а средства ее решения – это интуиция и догадка, эрудиция и владение методами математики.

В качестве основных в математике различают арифметический и алгебраический способы решения задач.

Решить задачу арифметическим методом – значит найти ответ на требование задачи посредством выполнения арифметических действий над числами.

При алгебраическом способе ответ на вопрос задачи находится в результате составления и решения уравнения.

Не секрет, что человек, владеющий разными инструментами и применяющий их в зависимости от характера выполняемой работы, добивается значительно лучших результатов, чем человек, владеющий лишь одним универсальным инструментом.

Существует много арифметических способов и нестандартных приемов решения задач. С некоторыми из них я сегодня хочу вас познакомить.

1.Метод решения текстовых задач «Сравнение чисел по сумме и разности».

Задача: Бабушка осенью с дачного участка собрала 51 кг моркови и капусты. Капусты было на 15 кг больше, чем моркови. Сколько килограммов моркови и сколько килограммов капусты собрала бабушка?

Вопросы, которые соответствуют пунктам алгоритма решения задач данного класса.

1. Выяснить о каких величинах идет речь в задаче

О количестве моркови и капусты, которые собрала бабушка, вместе и в отдельности.

2. Указать, значения каких величин необходимо найти в задаче.

Сколько килограммов моркови и сколько килограммов капусты собрала бабушка?

3. Назвать зависимость между величинами в задаче.

В задаче говорится о сумме и разности величин.

4. Назвать сумму и разность значений величин.

Сумма – 51 кг, разность – 15 кг.

5. Уравниванием величин найти удвоенное значение меньшей величины (от суммы величин отнять разность величин).

51 – 15 = 36 (кг) – удвоенное количество моркови.

6. Зная удвоенное значение, найти значение меньшей величины (удвоенное значение разделить на два).

36: 2 = 18 (кг) – моркови.

7. Используя разность величин и значение меньшей величины, найти значение большей величины.

18 + 15 = 33 (кг) – капусты. Ответ: 18 кг, 33 кг. Задача. В клетке находятся фазаны и кролики. Всего 6 голов и 20 ног. Сколько кроликов и сколько фазанов в клетке ?
Способ 1. Метод подбора:
2 фазана, 4 кролика.
Проверка: 2 + 4 = 6 (голов); 4 4 + 2 2 = 20 (ног).
Это метод подбора (от слова “подбирать”). Преимущества и недостатки у этого метода решения (трудно подбирать, если числа большие) Таким образом, появляется стимул для поиска более удобных методов решения.
Итоги обсуждения: метод подбора удобен при действиях с маленькими числами, при увеличении величин он становится нерациональным и трудоемким.
Способ 2. Полный перебор вариантов.

Составляется таблица:


Ответ: 4 кролика, 2 фазана.
Название этому методу - “полный”. Итоги обсуждения: метод полного перебора удобен, но при больших величинах достаточно трудоемок.
Способ 3. Метод предположения.

Возьмем старинную китайскую задачу:

В клетке находится неизвестное число фазанов и кроликов. Известно, что вся клетка содержит 35 голов и 94 ноги. Узнать число фазанов и число кроликов. (Задача из китайской математической книги «Киу-Чанг», составленной за 2600 лет до н. э.).

Приведем диалог, найденный у старых мастеров математики. - Представим, что на клетку, в которой сидят фазаны и кролики, мы положили морковку. Все кролики встанут на задние лапки, чтобы дотянуться до морковки. Сколько ног в этот момент будет стоять на земле?

Но в условии задачи даны 94 ноги, где же остальные?

Остальные ноги не посчитаны – это передние ноги кроликов.

Сколько же их?

24 (94 – 70 = 24)

Сколько же кроликов?

12 (24: 2 = 12)

А фазанов?

23 (35- 12 = 23)

Название этого метода – “метод предположения по недостатку”. Попробуйте сами объяснить это название (у сидящих в клетке 2 или 4 ноги, а мы предположили, что у всех наименьшее из этих чисел – 2 ноги).

Другой способ решения этой же задачи. - Давайте попробуем решить эту задачу - “методом предположения по избытку”: Представим себе, что у фазанов появилось еще по две ноги, тогда всех ног будет 35 × 4 =140.

Но по условию задачи, всего 94 ноги, т.е. 140 – 94= 46 ноги лишние, чьи они? Это ноги фазанов, у них появилась лишняя пара ног. Значит, фазанов будет 46: 2 = 23, тогда кроликов 35 -23 = 12.
Итоги обсуждения: метод предположения имеет два варианта – по недостатку и по избытку ; по сравнению с предыдущими методами он удобнее, так как менее трудоемок.
Задача. По пустыне медленно идет караван верблюдов, всего их 40. Если пересчитать все горбы у этих верблюдов, то получится 57 горбов. Сколько в этом караване одногорбых верблюдов? 1 способ. Решить с помощью уравнения.

Кол- во горбов у одного Кол- во верблюдов Всего горбов

2 х 2 х

1 40 - х 40 - х 57

2 х + 40 - х = 57

х + 40 = 57

х = 57 -40

х = 17

2 способ.

- Сколько горбов может быть у верблюдов?

(их может быть два или один)

Давайте каждому верблюду на один горб прикрепим цветок.

- Сколько цветков потребуется? (40 верблюдов – 40 цветов)

- Сколько горбов останется без цветов?

(Таких будет 57-40=17 . Это вторые горбы двугорбых верблюдов).

Сколько двугорбых верблюдов? (17)

Сколько одногорбых верблюдов? (40-17=23)

Каков же ответ задачи? (17 и 23 верблюдов).

Задача. В гараже стояли легковые машины и мотоциклы с колясками, всех вместе 18. У машин и мотоциклов – 65 колес. Сколько мотоциклов с колясками стояло в гараже, если у машин 4 колеса, а у мотоцикла – 3 колеса?

1 способ. С помощью уравнения:

Кол- во колес у 1 Кол- во Всего колес

Маш. 4 х 4 х

Мот. 3 18 - х 3(18 - х ) 65

4 х + 3(18 - х ) = 65

4 х + 5 4 -3 х =65

х = 65 - 54

х = 11, 18 – 11 = 7.

Переформулируем задачу : Грабители, пришедшие в гараж, где стояли 18 машин и мотоциклов с колясками, сняли с каждой машины и каждого мотоцикла по три колеса и унесли. Сколько колес осталось в гараже, если их было 65? Машине или мотоциклу они принадлежат?

3×18=54 –столько колес унесли грабители,

65- 54 = 11 – столько колес осталось (машин в гараже),

18 - 11 = 7 –мотоциклов.

Ответ: 7 мотоциклов.

Самостоятельно:

В гараже стояли 23 легковых машин и мотоциклов с коляской. У машин и мотоциклов 87 колес. Сколько в гараже мотоциклов, если в каждую коляску положили запасное колесо?

- Сколько стало колес у машин и мотоциклов вместе? (4×23=92)

- Сколько запасных колес положили в каждую коляску? (92 - 87= 5)

- Сколько машин в гараже? (23 - 5=18).

Задача. В нашем классе можно изучать английский или французский языки (по выбору). Известно, что английский язык изучают 20 школьников, а французский – 17. Всего в классе 32 ученика. Сколько учащихся изучают оба языка: и английский и французский?

Изобразим два круга. В одном будем фиксировать количество школьников, изучающих английский язык, в другом –школьников, изучающих французский. Так как по условию задачи есть учащиеся, изучающие оба языка: и английский и французский , то круги будут иметь общую часть. В условии этой задачи не так легко разобраться. Если сложить 20 и 17, то получится больше чем 32. Это объясняется тем, что некоторых школьников мы здесь учли дважды – а именно тех, которые изучают оба языка: и английский и французский. Значит, (20 + 17) – 32 = 5 учащихся изучают оба языка: и английский и французский.

Англ. Фран.

20 уч. 17 уч.

(20 + 17) – 32 = 5 (учащихся).

Схемы, подобные той, которой мы воспользовались при решении задачи, в математике называют кругами (или диаграммами) Эйлера. Леонард Эйлер (1736 год) родился в Швейцарии. Но долгие годы жил работал в России.

Задача. Каждая семья, живущая в нашем доме, выписывает или газету, или журнал, или и то и другое. 75 семей выписывают газету, а 27 семей выписывают журнал, и лишь 13 семей выписывают и журнал и газету. Сколько семей живет в нашем доме?

Газеты Журналы

По рисунку видно, что в доме живут 89 семей.

Задача. В международной конференции участвовало 120 человек. Из них 60 владеют русским языком, 48 – английским, 32 – немецким, 21 – русским и немецким, 19 – английским и немецким, 15 – русским и английским, а 10 человек владели всеми тремя языками. Сколько участников конференции не владеют ни одним из этих языков?

Русский 15 Английский

21 10 19

Немецкий

Решение: 120 – (60 + 48 + 32 -21 – 19 – 15 + 10) = 25 (чел.).

Задача. Три котенка и два щенка весят 2 кг 600 г, а два котенка и три щенка весят 2 кг 900 г. Сколько весит щенок?

3 котенка и 2 щенка – 2кг 600 г

2 котенка и 3щенка – 2кг 900 г.

Из условия следует, что 5 котят и 5 щенят весят 5 кг 500 г. Значит, 1 котенок и 1 щенок весят 1 кг 100 г

2 кот.и 2 щен. весят 2 кг 200 г

Сравним условия –

2 котенка + 3щенка =2кг 900 г

2 котенка + 2 щенка = 2 кг 200 г, видим, что щенок весит 700 г.

Задача. Для одной лошади и двух коров выдают ежедневно 34 кг сена, а для двух лошадей и одной коровы - 35 кг сена. Сколько сена выдают одной лошади и сколько одной корове?

Запишем краткое условие задачи:

1 лошади и 2 коров -34кг.

2 лошадей и 1 коров -35кг.

Можно ли узнать, сколько сена потребуется для 3 лошадей и 3 коров?

(для 3 лошадей и 3 коров – 34+35=69 кг)

Можно ли узнать, сколько сена потребуется для одной лошади и одной коровы? (69: 3 – 23кг)

Сколько сена потребуется для одной лошади? (35-23=12кг)

Сколько сена потребуется для одной коровы? (23 -13 =11кг)

Ответ: 12кг и 11 кг.

Задача. Мадина решила позавтракать в школьном буфете. Изучи меню и ответь, сколькими способами она может выбрать напиток и кондитерское изделие?

Кондитерские изделия

Ватрушка

Давайте предположим, что из напитков Мадина выберет чай. Какое кондитерское изделие она может подобрать к чаю? (чай – ватрушка, чай – печенье, чай – булка)

Сколько способов? (3)

А если компот? (тоже 3)

Как же узнать, сколько способов может Мадина использовать, чтобы выбрать себе обед? (3+3+3=9)

Да, вы правы. Но чтобы нам было легче решать такую задачу, мы будем использовать графы. Слово «граф» в математике означает картинку, где нарисовано несколько точек, некоторые из которых соединены линиями. Обозначим напитки и кондитерские изделия точками и соединим пары тех блюд, которые выберет Мадина.

чай молоко компот

ватрушка печенье булочка

Теперь сосчитаем количество линий. Их 9. Значит, существует 9 способов выбора блюд.

Задача. Сережа решил подарить маме на день рождения букет цветов (розы, тюльпаны или гвоздики) и поставить их или в вазу, или в кувшин. Сколькими способами он может это сделать?

Как думаете, сколькими способами? (3)

Почему? (цветов 3)

Да. Но еще есть разная посуда: или ваза, или кувшин. Давай попробуем выполнить задачу графически.

ваза кувшин

розы тюльпаны гвоздики

Посчитайте линии. Сколько их? (6)

Значит, сколько существует способов выбора у Сережи? (6)

Итог урока.

Сегодня мы решили ряд задач. Но работа не завершена, есть желание ее продолжить, и надеюсь, что это поможет вам успешно решать текстовые задачи.

Известно, что решение задач – это практическое искусство, подобное плаванию или игре на фортепиано. Научиться ему можно только подражая хорошим образцам, постоянно практикуясь.

Это лишь самые простые из задач, сложные пока остаются предметом для будущего изучения. Но их все равно их намного больше, чем мы смогли бы решить. И если по окончанию урока вы сможете решать задачи «за страницами учебного материала», то можно считать, что я свою задачу выполнила.

Знание математики помогает разрешить определённую жизненную проблему. В жизни вам придется регулярно разрешать определённые вопросы, для этого необходимо развивать интеллектуальные способности, благодаря которым развивается внутренний потенциал, развиваются умения предвидеть ситуацию, прогнозировать, принять нестандартное решение.

Урок я хочу закончить словами: «Всякая хорошо решенная математическая задача доставляет умственное наслаждение.» (Г. Гессе).

Согласны вы с этим?

Домашнее задание .

На дом будет такое задание: используя тексты решенных задач, как образец, решите задачи № 8, 17, 26 теми способами, которые мы изучили.

Учителю начальных классов просто необходимо знать, какие имеются виды задач. Сегодня вы узнаете про простые текстовые арифметические задачи. Простые текстовые арифметические задачи — это задачи, которые решаются одним арифметическим действием . Когда мы читаем задачу, мы автоматически соотносим ее с каким либо видом, а тут уже сразу легко становится понятно, каким действием ее надо решать.

Я предоставлю вам не только саму классификацию простых текстовых задач, но и приведу их примеры, а также расскажу про решение текстовых задач арифметическим способом. Все примеры я взяла из учебников математики для 2 класса (ч.1, ч.2), по которым обучаются в школах Беларуси.

Все простые арифметические задачи подразделяют на две большие группы:

— АД I (+/-), то есть те, которые решаются арифметическими действиями первого порядка (сложением или вычитанием);

— АД II (*/:), то есть те, которые решаются арифметическими действиями второго порядка (умножением или делением).

Рассмотрим первую группу простых текстовых арифметических задач (АД I):

1) Задачи, раскрывающие конкретный смысл сложения (+)

В соревнованиях по бегу приняли участие 4 девочки и 5 мальчиков. Сколько учеников из класса участвовало в соревнованиях?

После того, как Саша решил 9 примеров, ему осталось решить еще 3 примера. Сколько всего примеров нужно было решить Саше?

Решаются такие задачи сложением: a+b=?

2) Задачи, раскрывающие конкретный смысл вычитания (-)

Мама испекла 15 пирожков. Сколько пирожков осталось после того, как съели 10 пирожков?

В банке было 15 стаканов сока. За обедом выпили 5 стаканов. Сколько стаканов сока осталось?

Решаются такие задачи вычитанием: a-b=?

3) Задачи на взаимосвязь между компонентами и результатом действия сложения или вычитания:

а) на нахождение неизвестного 1-го слагаемого (?+а=b)

Мальчик положил в коробку 4 карандаша. Там их стало 13. Сколько карандашей было в коробке первоначально?

Чтобы решить эту задачу, надо от результата действия отнять известное 2-е слагаемое: b-a=?

б) на нахождение неизвестного 2-го слагаемого (a+?=b)

В кастрюлю и чайник налили 13 стаканов воды. Сколько стаканов воды налили в чайник, если в кастрюлю налили 5 стаканов?

Задачи такого типа решаются вычитанием, от результата действия отнимается известное 1-е слагаемое: b-a=?

в) на нахождение неизвестного уменьшаемого (?-а=b)

Ольга собрала букет. В вазу она поставила 3 цвета, и у нее осталось 7 цветов. Сколько цветов было в букете?

Арифметическим способом решение текстовых задач данного типа производится сложением результата действия и вычитаемого: b+a=?

г) на нахождение неизвестного вычитаемого (а-?=b)

Купили 2 десятка яиц. После того как несколько яиц взяли для выпечки, осталось 15. Сколько яиц взяли?

Эти задачи решаются вычитанием: от уменьшаемого отнимаем результат действия: а-b=?

4) Задачи на уменьшение / увеличение на несколько единиц в прямой, косвенной форме

примеры задач на уменьшение на несколько единиц в прямой форме:

В одной коробке было 20 кг бананов, а во второй — на 5 меньше. Сколько килограммов бананов было во второй коробке?

Первый класс собрал 19 ящиков яблок, а второй — на 4 ящика меньше. Сколько ящиков яблок сорвал второй класс?

Эти задачи решаются вычитанием (a-b=? )

Примеров задач на уменьшение в косвенной форме, а также на увеличение в прямой или косвенной форме в учебнике 2-го класса по математике я не обнаружила. Если будет необходимость, пишите в комментариях — и я дополню статью собственными примерами.

5) Задачи на разностные сравнения

Масса гуся — 7 кг, а курицы — 3 кг. На сколько килограммов масса курицы меньше массы гуся?

В первой коробке 14 карандашей, а во второй — 7. На сколько больше карандашей в первой коробке, чем во второй?

Решение текстовых задач на разностные сравнения производится вычитанием от большего числа меньшего.

Мы закончили разбираться с простыми текстовыми арифметическими задачами 1 группы и переходим к задачам 2 группы. Если вам было что-либо непонятно, спрашивайте в комментариях.

Вторая группа простых текстовых арифметических задач (АД II):

1) Задачи, раскрывающие конкретный смысл умножения

Сколько ног у двух собак? У трех собак?

Возле дома стоят три машины. У каждой машины по 4 колеса. Сколько колес у трех машин?

Данные задачи решаются умножением: a*b=?

2) Задачи, раскрывающие конкретный смысл деления:

а) по содержанию

10 пирожных раздали детям, по два каждому. Сколько детей получили пирожные?

В пакетах по 2 кг находится 14 кг муки. Сколько таких пакетов?

В этих задачах мы узнаем, сколько частей получилось с равным содержанием.

б) на равные части

Полоску длиной 10 см разрезали на две равные части. Какой длины каждая часть?

Нина разложила 10 пирожных на 2 тарелки поровну. Сколько пирожных на одной тарелке?

А в этих задачах мы узнаем, каково содержание одной равной части.

Как бы то ни было, все эти задачи решаются делением: a:b=?

3) Задачи на взаимосвязь между компонентом и результатом действий умножения и деления:

а) на нахождение неизвестного первого множителя: ?*а=b

Собственный пример:

В нескольких коробках по 6 карандашей. Всего в коробках 24 карандаша. Сколько коробок?

Решается делением произведения на известный второй множитель: b:a=?

б) на нахождение неизвестного второго множителя: а*?=b

В кафе за один столик можно посадить 3 человека. Сколько таких столиков будет занято, если туда придут 15 человек?

Решается делением произведения на известный первый множитель: b:a=?

в) на нахождение неизвестного делимого: ?:а=b

Собственный пример:

Коля принес в класс конфеты и поделил их поровну между всеми учениками. В классе 16 детей. Каждый получил по 3 конфеты. Сколько конфет принес Коля?

Решается умножением частного на делитель: b*a=?

г) на нахождение неизвестного делителя: а:?=b

Собственный пример:

Витя принес 44 конфеты в класс и поделил их поровну между всеми учениками. Каждый получил по 2 конфеты. Сколько учеников в классе?

Решается делением делимого на частное: а:b=?

4) Задачи на увеличение / уменьшение в несколько раз в прямой или косвенной форме

В учебнике 2 класса примеров подобных текстовых арифметических задач не найдено.

5) Задачи на кратное сравнение

Решаются делением большего на меньшее.

Друзья, вся вышеизложенная классификация простых текстовых задач — это лишь часть большой классификации всех текстовых задач. Кроме того, имеются еще задачи на нахождение процентов, о которых я вам не рассказала. Обо всем этом вы можете узнать из данного видео:

И моя благодарность останется с вами!

Низкопоклонная Мария, Брянцева Людмила

Работа показывает способы решения текстовых задач.

Скачать:

Предварительный просмотр:

Муниципальное образовательное учреждение средняя общеобразовательная школа № 64 г. Волгограда

Городской конкурс учебно-исследовательских работ

« Я и Земля» им. В.И. Вернадского

(районный этап)

АРИФМЕТИЧЕСКИЙ СПОСОБ РЕШЕНИЯ

ТЕКСТОВЫХ ЗАДАЧ ПО МАТЕМАТИКЕ

Секция « Математика»

Выполнили: Брянцева Людмила,

Обучающаяся 9 А класса МОУ СОШ № 64,

Низкопоклонная Мария,

Обучающаяся 9 А класса МОУ СОШ № 64.

Руководитель: Носкова Ирина Анатольевна,

Учитель математики МОУ СОШ № 64

Волгоград 2014

Введение …………………………………………………………… 3

Глава 1. Нестандартные способы решения задач

  1. Задачи по теме « Натуральные числа» ………………….. 5
  1. . Задачи « на части и проценты» …………………………... 8
  2. Задачи на движение……………………………………...... 11
  3. Задачи на совместную работу…………………………… 14

Заключение ………………………………………………………. 16

Литература ………………………………………………………. 16

Введение.

Известно, что исторически долгое время математические знания передавались из поколения в поколение в виде списка задач практического содержания вместе с их решениями. Первоначально обучение математике велось по образцам. Ученики, подражая учителю, решали задачи на определённое « правило». Таким образом, в давние времена обученным считался тот, кто умел решать задачи определённых типов, встречавшихся в практике (в торговых расчётах и пр.).

Одна из причин этого заключалась в том, что исторически долгое время целью обучения детей арифметике было освоение ими определённого набора вычислительных умений, связанных с практическими расчётами. При этом линия арифметики – линия числа – ещё не была разработана, а обучение вычислениям велось через задачи. В «Арифметике» Л.Ф. Магницкого, например, дроби рассматривались как именованные числа(не просто , а рубля, пуда и т.п.), а действия с дробями изучались в процессе решения задач. Эта традиция сохранялась довольно долго. Даже много позже встречались задачи с неправдоподобными числовыми данными, например: « Продано кг сахара по рубля за килограмм…», которые были вызваны к жизни не потребностями практики, а потребности обучения вычислениям.

Вторая причина повышенного внимания к использованию текстовых задач в России заключается в том, что в России не только переняли и развили старинный способ передачи с помощью текстовых задач математических знаний и приёмов рассуждений. Научились формировать с помощью задач важные общеучебные умения, связанные с анализом текста, выделением условий задачи и главного вопроса, составлением плана решения, поиском условий, из которых можно получить ответ на главный вопрос, проверкой полученного результата. Немаловажную роль играло также приучение школьников переводу текста на язык арифметических действий, уравнений, неравенств, графических образов.

Ещё один момент, который невозможно обойти, когда мы говорим о решении задач. Обучение и развитие во многом напоминает развитие человечества, поэтому использование старинных задач, разнообразных арифметических способов их решения позволяет идти в историческом контексте, что развивает творческий потенциал. Кроме того, разнообразные способы решения будят фантазию детей, позволяют организовать поиск решения каждый раз новым способом, что создаёт благоприятный эмоциональный фон для обучения.

Таким образом, актуальность данной работы можно обобщить в нескольких положениях:

Текстовые задачи являются важным средством обучения математике. С помощью их учащиеся получают опыт работы с величинами, постигают взаимосвязи между ними, получают опыт применения математики к решению практических задач;

Использование арифметических способов решения задач развивает смекалку и сообразительность, умение ставить вопросы, отвечать на них, то есть развивает естественный язык;

Арифметические способы решения текстовых задач позволяют развивать умение анализировать задачные ситуации, строить план решения с учётом взаимосвязей между известными и неизвестными величинами, истолковывать результат каждого действия, проверять правильность решения с помощью составления и решения обратной задачи;

Арифметические способы решения текстовых задач приучают к абстракциям, позволяют воспитывать логическую культуру, могут способствовать созданию благоприятного эмоционального фона обучения, развитию эстетического чувства применительно к решению задачи и изучению математики, вызывая интерес к процессу поиска решения, а затем и к самому предмету;

Использование исторических задач и разнообразных старинных (арифметических) способов их решения не только обогащает опыт мыслительной деятельности, но и позволяет осваивать важный культурно-исторический пласт истории человечества, связанный с поиском решения задач. Это важный внутренний стимул к поиску решений задач и изучению математики.

Из всего вышесказанного, мы делаем следующие выводы:

предметом исследования является блок текстовых задач по математике 5-6 классов;

объектом исследования является арифметический способ решения задач.

целью исследования является рассмотрение достаточного количества текстовых задач школьного курса математики и применение к их решению арифметического способа решения;

задачами для реализации цели исследования являются разбор и решение текстовых задач по основным разделам курса « Натуральные числа», « Рациональные числа», «Пропорции и проценты», « Задачи на движение»;

методом исследования является практико - поисковый.

Глава 1. Нестандартные способы решения задач.

  1. Задачи по теме « Натуральные числа ».

На данном этапе работы с числами арифметические способы решения задач имеют преимущество над алгебраическими уже потому, что результат каждого отдельного шага в решении по действиям имеет совершенно наглядное и конкретное истолкование, не выходящее за рамки жизненного опыта. Поэтому быстрее и лучше усваиваются различные приёмы рассуждений, опирающиеся на воображаемые действия с известными величинами, чем единый для задач с различной арифметической ситуацией способ решения, основанный на применении уравнения.

1. Задумали число, увеличили его на 45 и получили 66. Найдите задуманное число.

Для решения можно использовать схематичный рисунок, помогающий наглядно представить взаимосвязь операций сложения и вычитания. Особенно эффективной помощь рисунка окажется при большем числе действий с неизвестной величиной. Задумали число 21.

2. Летом у меня целые сутки было открыто окно. В первый час влетел 1 комар, во второй – 2 комара, в третий – 3 и т.д. Сколько комаров влетело за сутки?

Здесь используется метод разбивания всех слагаемых на пары (первое с последним; второе с предпоследним и т.д.), найти сумму каждой пары слагаемых и умножить на количество пар.

1 + 2 + 3 + … + 23 + 24 = (1 + 24) + (2 + 23) + …. + (12 + 13) = 25 · 12 = 300.

Влетело 300 комаров.

3. Гости спросили: сколько лет исполнилось каждой из сестёр? Вера ответила, что ей и Наде вместе 28 лет; Наде и Любе вместе 23 года, а всем троим 38 лет. Сколько лет каждой сестре?

1. 38 – 28 = 10 (лет) – Любе;

2. 23 – 10 = 13 (лет) – Наде;

3.28 – 13 = 15 (лет) – Вере.

Любе 10 лет, Наде 13 лет, Вере 15 лет.

4. В нашем классе 30 учащихся. На экскурсию в музей ходили 23 человека, в кино – 21 ,а 5 человек не ходили ни на экскурсию, ни в кино. Сколько человек ходили и на экскурсию, и в кино?

Рассмотрим решение задачи, на рисунке отражены этапы рассуждения.

  1. 30 – 5 = 25(чел.) – ходили в кино, или на

Экскурсию;

  1. 25 – 23 = 2 (чел.) – ходили только в кино;
  2. 21 – 2 = 19 (чел.) – ходили и в кино, и на

Экскурсию.

19 человек ходили и в кино, и на экскурсию.

5. Некто имеет 24 купюры двух видов – по 100 и 500 рублей на сумму 4000 рублей. Сколько у него купюр по 500 рублей?

Поскольку полученная сумма, число «круглое», то следовательно, количество купюр по 100 рублей кратно 1000. Таким образом, количество купюр по 500 рублей тоже кратно 1000. Отсюда имеем – по 100 рублей 20 купюр; по 500 рублей – 4 купюры.

У некто 4 купюры по 500 рублей.

6. Дачник пришёл от своей дачи на станцию через 12 минут после отхода электрички. Если бы он на каждый километр тратил на 3 минуты меньше, то пришёл бы как раз к отходу электрички. Далеко ли от станции живёт дачник?

Тратя на каждый километр на 3 минуты меньше, дачник мог бы сэкономить 12 минут на расстоянии 12: 3 = 4 км.

Дачник живёт в 4 км от станции.

7. Родник в 24 минут даёт бочку воды. Сколько бочек воды даёт родник в сутки?

Поскольку надо обойти дроби, то не надо находить, какую часть бочки наполняют за 1 минуту. Узнаем, за сколько минут наполнится 5 бочек: за 24 · 5 = 120 минут, или 2 часа. Тогда за сутки наполнится в 24: 2 = 12 раз больше бочек, чем за 2 часа, то есть 5· 12 = 60 бочек.

Родник даёт в сутки 60 бочек.

8. На некотором участке меняют старые рельсы длиной 8м на новые длиной 12 м. Сколько потребуется новых рельсов вместо 240 старых?

На участке длиной 24 м вместо 3 старых рельсов положат 2 новых. Рельсы заменят на 240: 3 =80 таких участках, а положат на них 80 · 2 = 160 новых рельсов.

Потребуется 160 новых рельсов.

9. В булочной было 654 кг чёрного и белого хлеба. После того как продали 215 кг чёрного и 287 кг белого хлеба, того и другого сорта хлеба осталось поровну. Сколько килограммов чёрного и белого хлеба в отдельности было в булочной?

1) 215 + 287 = 502 (кг) – продали хлеба;

2) 654 – 502 = 152 (кг) – хлеба осталось продать;

3) 152: 2 = 76 (кг) белого (и чёрного) хлеба осталось продать;

4) 215 + 76 = 291 (кг) – чёрного хлеба было первоначально;

5) 287 + 76 = 363 (кг) – белого хлеба было первоначально.

291 кг чёрного хлеба было первоначально и 363 кг белого хлеба было первоначально.

  1. Задачи « на части и проценты».

В результате работы с задачами данного раздела необходимо принимать подходящую величину за 1 часть, определять сколько таких частей приходится на другую величину, на их сумму (разность), затем получить ответ на вопрос задачи.

10. Первая бригада может выполнить задание за 20ч, а вторая – за 30ч. Сначала бригады выполнили при совместной работе ¾ задания, а остальная часть задания выполнила одна первая бригада. За сколько часов было выполнено задание?

Задачи на производительность труда менее понятны, чем задачи на движение. Поэтому здесь необходим детальный анализ каждого шага.

1)Если первая бригада работает одна, то она выполнит задание за 20ч – это означает, что каждый час она выполняет всего задания.

2)Аналогично рассуждая, получаем производительность труда для второй бригадой - всего задания.

3)Сначала, работая вместе, бригады выполнили всего задания. А сколько же времени они затратили? . То есть, за один час совместной работы обе бригады выполняют двенадцатую часть задания.

4)Тогда задания они выполнят за 9 часов, так как (по основному свойству дроби).

5)Осталось выполнить задания, но уже только первой бригаде, которая за 1 час выполняет всего задания. Стало быть первой бригаде надо работать 5 часов , чтобы довести дело до конца, так как .

6)Окончательно имеем, 5 + 9 = 14 часов.

За 14 часов будет выполнено задание.

11 . Объёмы ежегодной добычи из первой, второй, и третьей скважины относятся как 7: 5: 13. Планируется уменьшить годовую добычу нефти из первой скважины на 5% и из второй – на 6 % . На сколько процентов нужно увеличить годовую добычу нефти из третьей скважины, чтобы суммарный объём добываемой за год нефти не изменился ?

Задачи на части и проценты ещё более трудоёмкая и непонятная область задач. Поэтому конкретнее всего нам их было понять на числовых примерах. Пример 1. Пусть годовая добыча нефти составляет 1000 баррелей. Тогда, зная, что эта добыча разбита на 25 частей (7+5+13=25, т.е. одна часть составляет 40 баррелей) имеем: первая вышка качает 280 баррелей, вторая – 200 баррелей, третья – 520 баррелей в год. При снижении добычи на 5% первая вышка теряет 14 баррелей (280·0,05 = 14), то есть её добыча составит 266 баррелей. При снижении добычи на 6% вторая вышка теряет 12 баррелей (200·0,06 = 12), то есть её добыча составит 188 баррелей.

Всего за год они вместе будут качать 454 баррелей нефти, тогда третьей вышке вместо 520 баррелей необходимо будет добывать 546 баррелей.

Пример 2. Пусть годовая добыча нефти составляет 1500 баррелей. Тогда, зная, что эта добыча разбита на 25 частей (7+5+13=25, т.е. одна часть составляет 60 баррелей) имеем: первая вышка качает 420 баррелей, вторая – 300 баррелей, третья – 780 баррелей в год. При снижении добычи на 5% первая вышка теряет 21 баррелей (420·0,05 = 21), то есть её добыча составит 399 баррелей. При снижении добычи на 6% вторая вышка теряет 18 баррелей (300·0,06 = 18), то есть её добыча составит 282 баррелей.

Всего за год они вместе будут качать 681 баррелей нефти, тогда третьей вышке вместо 780 баррелей необходимо будет добывать 819 баррелей.

Это на 5% больше прежней добычи, так как .

На 5% нужно увеличить годовую добычу нефти из третьей скважины, чтобы суммарный объём добываемой за год нефти не изменился.

Можно рассмотреть и другой вариант подобной задачи. Здесь мы вводим некоторую переменную, которая является лишь «символом» единиц объёма.

12. Объём ежегодной добычи нефти из первой, второй и третьей скважин относятся как 6:7:10. Планируется уменьшить годовую добычу нефти из первой скважины на 10% и из второй на 10%. На сколько процентов нужно увеличить годовую добычу нефти из третьей скважины, чтобы суммарный объём добываемой нефти не изменился?

Пусть объёмы ежегодной добычи нефти из первой, второй и третьей скважин равны соответственно 6х, 7х, 10х некоторых единиц объёма.

1) 0,1 ·6х = 0,6х (единиц) – снижение добычи на первой скважине;

2)0,1 ·7х = 0,7х (единиц) – снижение добычи на второй скважине;

3)0,6х + 0,7х= 1,3х (единиц) – должно составить повышение объёма добычи нефти на третьей скважине;

На столько процентов нужно увеличить годовую добычу нефти из третьей скважины.

Годовую добычу нефти из третьей скважины нужно увеличить на 13%.

13. Купили 60 тетрадей – в клетку было в 2 раза больше, чем в линейку. Сколько частей приходится на тетради в линейку; на тетради в клетку; на все тетради? Сколько купили тетрадей в линейку? Сколько в клетку?

При решении задачи лучше опираться на схематический рисунок, легко воспроизводимый в тетради и дополняемый по ходу решения нужными записями. Пусть тетради в линейку составляют 1 часть, тогда тетради в клетку составляют 2 части.

1) 1 + 2 = 3(части) – приходится на все тетради;

2) 60: 3 = 20 (тетрадей) – приходится на 1 часть;

3) 20 · 2 = 40 (тетрадей) – тетради в клетку;

4) 60 – 40 = 20 (тетрадей) – в линейку.

Купили 20 тетрадей в линейку и 40 тетрадей в клетку.

14. В 1892 году некто думает провести в Петербурге столько минут, сколько часов проведёт в деревне. Сколько времени некто проведёт в Петербурге?

Так как 1час равен 60 минутам и число минут равно числу часов, то некто в деревне проведёт в 60 раз больше времени, чем в Петербурге (время на переезд здесь не учитывается). Если число дней, проведённых в Петербурге, составляет 1 часть, то число дней, проведённых в деревне, составляет 60 частей. Так как речь идёт о високосном годе, то на 1 часть приходится 366: (60 + 1) = 6 (дней).

Некто проведёт в Петербурге 6 дней.

15. Яблоки содержат 78% воды. Их немного подсушили, и теперь они содержат 45% воды. Сколько процентов своей массы яблоки потеряли при сушке?

Пусть х кг – масса яблок, тогда в ней содержится 0,78х кг воды и х – 0,78х = 0, 22х (кг) сухого вещества. После подсушки сухое вещество составляет 100 – 45 = 55(%) массы сухих яблок, поэтому масса сухих яблок равна 0,22х: 0,55 = 0,46х(кг).

Итак, яблоки при сушке потеряли х – 0,46х = 0,54х, то есть 54%.

При сушке яблоки потеряли 54% своей массы.

16. Трава содержит 82% воды. Её немного подсушили, и теперь она содержит 55% воды. Сколько своей массы трава потеряла при сушке?

При начальных условиях живая масса травы составляла 100% - 82% = 18%.

После сушке эта величина увеличилась до 45%, но при этом общая масса травы уменьшилась на 40 % (45: 18 ·10% = 40%).

40% своей массы трава потеряла при сушке.

  1. Задачи на движение.

Эти задачи считаются традиционно трудными. Поэтому есть необходимость более детально разобрать арифметический способ решения такого типа задач.

17. Из пункта А в пункт В одновременно выезжают два велосипедиста. Скорость одного из них на 2 км/ч меньше другого. Велосипедист, который первый прибыл в В, сразу же повернул обратно и встретил другого велосипедиста через 1ч 30 мин. после выезда из А. На каком расстоянии от пункта В произошла встреча?

Эта задача также решается на примере предметных образов и ассоциаций.

После того как рассмотрен ряд примеров, и число - расстояние 1,5 км ни у кого не вызывает сомнений, необходимо обосновать его нахождение из данных представленной задачи. А, именно, 1.5 км – это разность в отставании 2 от 1велосипедиста пополам: за 1,5 ч второй отстанет от первого на 3 км, поскольку 1 возвращается, то оба велосипедиста сближаются друг с другом на половину разницы пройденного пути, то есть на 1,5 км. Отсюда вытекает ответ задачи и метод решения такого рода текстовых задач.

Встреча произошла на расстоянии 1,5 км от пункта В.

18. Из Москвы в Тверь вышли одновременно два поезда. Первый проходил в час 39 верст и прибыл в Тверь двумя часами раньше второго, который проходил в час 26 вёрст. Сколько вёрст от Москвы до Твери?

1) 26 · 2 = 52 (версты) – на сколько второй поезд отстал от первого;

2) 39 – 26 = 13 (вёрст) – столько второй поезд отставал от первого за 1 час;

3) 52: 13 = 4 (ч) – столько времени был в пути первый поезд;

4) 39 · 4 = 156 (вёрст) – расстояние от Москвы до Твери.

От Москвы до Твери 156 вёрст.

  1. Задачи на совместную работу.

19. Одна бригада может выполнить задание за 9 дней, а вторая – за 12 дней. Первая бригада работала над выполнением этого задания 3 дня, потом вторая бригада закончила работу. За сколько дней было выполнено задание?

1) 1: 9 = (задания) – выполнит первая бригада за один день;

2 ) · 3 = (задания) - выполнила первая бригада за три дня;

3) 1 - = (задания) – выполнила вторая бригада;

4) 1: 12 = (задания) – выполнит вторая бригада за один день;

5) 8 (дней) – работала вторая бригада;

6) 3 + 8 = 11 (дней) – затрачено на выполнение задания.

Задание было выполнено за 11 дней.

20. Лошадь съедает воз сена за месяц, коза – за два месяца, овца – за три месяца. За какое время лошадь, коза и овца вместе съедят такой же воз сена?

Пусть лошадь, коза и овца едят сено 6 месяцев. Тогда лошадь съест 6 возов, коза – 3 воза, овца – 2 воза. Всего 11 возов, значит, в месяц они воза, а один воз съедят за 1: = (месяца).

Лошадь, коза, овца съедят воз сена за месяца.

21. Четыре плотника хотят построить дом. Первый плотник может построить дом за 1 год, второй – за 2 года, третий – за 3 года, четвёртый - за 4 года. За сколько времени они построят дом при совместной работе?

За 12 лет каждый в отдельности плотник может построить: первый – 12 домов; второй – 6 домов; третий – 4 дома; четвёртый – 3 дома. Таким образом, за 12 лет они могут построить 25 домов. Следовательно, один двор, работая вместе, они сумеют построить за 175,2 дней.

Плотники смогут построить дом, работая вместе за 175, 2 дня.

Заключение.

В заключении следует сказать, что представленные в исследовании задачи лишь небольшой пример применения арифметических способов при решении текстовых задач. Надо сказать об одном важном моменте – выборе фабулы задач. Дело в том, что невозможно предусмотреть всех трудностей при решении задач. Но тем не менее, в момент первоначального усвоения приёма решения какого-либо типа задач их фабула должна быть как можно проще.

Приведённые образцы представляют особый случай, но они отражают направление – приближение школы к жизни.

Литература

1.Вилейтнер Г. Хрестоматия по истории математики. – Вып.I.Арифметика и алгебра/ перев. с нем. П.С. Юшкевича. – М.-Л.:1932.

2.Тоом А.Л. Текстовые задачи: приложения или умственные манипулятивы //Математика,2004.

3.Шевкин А.В. Текстовые задачи в школьном курсе математики.М, 2006.

Арифметический способ решения текстовых задач

«…пока мы стараемся увязывать обучение математике с жизнью, нам будет трудно обойтись без текстовых задач – традиционного для отечественной методики средства обучения математике».

А.В.Шевкин

Умение решать текстовые задачи – один из основных показателей математического развития учащихся, глубины усвоения ими учебного материала, четкости в рассуждениях, понимания логических аспектов различных вопросов.

Текстовые задачи для большинства школьников – трудный, а поэтому нелюбимый учебный материал. Однако, в школьном курсе математики ему придается большое значение, так как задачи способствуют развитию прежде всего логического мышления, пространственного воображения, практического применения математических знаний в деятельности человека.

В процессе решения задач учащиеся получают опыт работы с величинами, постигают взаимосвязи между ними, получают опыт применения математики в решении реальных жизненных задач. Решение текстовых задач развивает логическую культуру, вызывая интерес сначала к процессу поиска решения задачи, а потом и к изучаемому предмету.

Традиционная российская школа всегда уделяла особое внимание обучению детей решению текстовых задач. Исторически сложилось так, что достаточно долгое время математические знания из поколения в поколение передавались в виде текстовых задач с решениями. Значимость их заключалась еще в прикладном значении, так как по своему содержанию это были задачи практической направленности (расчеты банковские, торговые, земельные и др.). Образованным в России считался тот, кто умел решать эти типовые задачи, очень важные в повседневной жизни.

Необходимо отметить, что бучение решению практических задач давалось нелегко. Часто наблюдалось заучивание наизусть способа решения без осознанного понимания условия. Главное – определить тип задачи и найти правило для ее решения, понимание было не важно.

К середине XX века была разработана хорошая методика обучению решению задач. Но, к сожалению, часто наблюдалось со стороны преподавателей натаскивание учащихся на решение типовых задач, запоминание стандартных приемов. Но невозможно научиться решать задачи по заученной схеме.

В конце 60-х годов реформа школьного математического образования предполагала раннее введение уравнений с целью по-новому организовать обучение решению задач. Однако, роль алгебраического способа решения текстовых задач в 5-6 классах была преувеличена именно потому, что из школьной программы были удалены арифметические способы. И практика доказала, что без достаточной подготовки мышления учащихся решать задачи с помощью уравнений нецелесообразно. Ученик должен уметь рассуждать, представлять действия, которые происходят с предметами.

В 5-6 классах арифметическому способу решения текстовых задач необходимо уделять достаточно внимания и не торопиться переходить к алгебраическому способу – решению задач с помощью уравнения. Как только ученик научился алгебраическому способу, его практически невозможно вернуть к «решению по действиям». Составив уравнение, главное – правильно его решить, не допустить вычислительной ошибки. И совсем не нужно задумываться над тем, какие производятся арифметические действия по ходу решения, к чему они приводят. А если проследить по шагам решение уравнения, мы увидим те же действия, что в арифметическом способе. Только над этим вряд ли задумывается ученик.

Очень часто мы наблюдаем, что ребенок не готов к решению задачи алгебраическим способом, когда вводим абстрактную переменную и появляется фраза «пусть икс…». Откуда взялся этот «икс», какие слова надо рядом с ним написать – на данном этапе ученику непонятно. И происходит это потому, что необходимо учитывать возрастные особенности детей, у которых на этот момент развито наглядно-образное мышление. Абстрактные модели им пока не под силу

Что же мы понимаем под требованием – решить задачу. Это значит найти такую последовательность действий, которая в результате анализа условия приведет к ответу на поставленный в задаче вопрос. Чтобы прийти к ответу, нужно проделать серьезный путь, начиная с момента понимания текста, уметь выделять главное, «перевести» задачу на язык математики, заменяя слова «скорее», «медленнее» на «меньше» или «больше», составлять графическую модель или таблицу, облегчающие понимание условия задачи, сопоставлять величины, устанавливая логические отношения между данными по условию и искомыми. И дается это детям очень нелегко.

Важно отметить, что текст задач должен составляться таким образом, чтобы ребенок понимал и представлял, о чем идет речь. Зачастую, прежде чем приступить к решению задачи, затрачивается много времени на разбор условия, когда учащимся приходится объяснять, что такое чугунная болванка, чем она отличается от детали, а также железобетонная опора, станок-автомат, жилая площадь и т.д. Текст задачи должен соответствовать уровню его восприятия. Конечно же, текст задачи необходимо приблизить к реальной жизни, чтобы можно было увидеть практическое применение данной модели.

Приступая к решению задачи необходимо не только представить ситуацию, о которой идет речь, но и изобразить ее на рисунке, схеме, в виде таблицы. Невозможно качественно решить задачу без составления краткой записи условия. Именно схематичное составление условия позволяет при обсуждении решения выявить все действия, которые необходимо выполнить, чтобы ответить на вопрос задачи.

Рассмотрим некоторые примеры решения текстовых задач

Задачи на движение

Данный тип задач широко распространен в школьном курсе математики. В них рассматриваются разные виды движения: навстречу, в противоположных направлениях, в одном направлении (один догоняет другого).

Для понимания этих задач удобно изобразить схему. Но, если учащийся составляет таблицу, не нужно переубеждать его в том, что данный способ краткой записи условия не очень хорош. Мы по-разному воспринимаем информацию. Может, ребенок в таком отображении лучше «видит» задачу.

Пример 1. Два велосипедиста одновременно выехали навстречу друг другу из двух посёлков и встретились через 3 часа. Первый велосипедист ехал со скоростью 12 км/ч, а второй – 14 км/ч. На каком расстоянии находятся посёлки?

Составим схему к задаче, которая достаточно полно отражает условие (указаны направления движения, скорости велосипедистов, время в пути до встречи, ясен вопрос):

Рассмотрим два способа решения этой задачи:

1 способ:

Традиционно мы любим решать эти задачи, вводя понятие «скорость сближения», и находим ее как сумму (или разность) скоростей участников движения. При движении навстречу друг другу – скорости складываем:

1)12 + 14 = 26 (км/ч) – скорость сближения

Зная, что время движения одинаково, второе действие позволяет по формуле пути (S = vt ) рассчитать искомое расстояние и ответить на поставленный в задаче вопрос.

2) 26 3 = 78 (км)

Составим выражение:

3(12 + 14) = 78(км)

Ответ : 78 км.

Но не все дети понимают, что это за абстрактная величина – скорость сближения. Почему можно складывать, а в других случаях вычитать скорости двух различных участников движения, объединяя их общим названием. Если ваши ученики решают эту задачу другим способом, не старайтесь их перетянуть на свою сторону. Для кого-то еще не настало время это понять, а кому-то первый способ вообще никогда не будет доступным.

2 способ:

1)12 3 = 36 (км) – путь первого велосипедиста до встречи

2)14 3 = 42 (км) – путь второго велосипедиста до встречи

3)36 + 42 = 78 (км) – расстояние между посёлками

Составим выражение:

12 3 + 14 3 = 78 (км)

Ответ : 78 км.

Постепенно, когда ребенок научится понимать такие задачи, сравнивая числовые выражения, можно показать, что оба способа взаимосвязаны, а заодно вспомнить распределительное свойство умножения:

12 3 + 14 3 = 3(12 + 14) = 78

Пример 2. В двух пачках было 54 тетради. Когда из первой пачки убрали 10 тетрадей, а из второй - 14 тетрадей, то в обеих пачках стало тетрадей поровну. Сколько было тетрадей в каждой пачке первоначально?

Как можно отобразить условие?

1.Составить таблицу:

Было

Убрали

Стало

1 пачка - ? 54 тет.

2 пачка – ?

10 тет.

14 тет.

поровну

2. Сделать рисунок

Забрали 14 шт.

Забрали 10 шт.

Поровну

Всего 54 шт.

Проанализируем решение задачи, обращая внимание на то, на какие вопросы мы даем ответы, выполняя каждое арифметическое действие:

1) Сколько всего тетрадей убрали из обеих пачек?

10 + 14 = 24 (шт.);

2) Сколько стало тетрадей в двух пачках?

    24 = 30 (шт.);

3) Сколько стало в каждой пачке тетрадей?

30: 2 = 15 (шт.);

4) Сколько было тетрадей в первой пачке первоначально?

    10 = 25 (шт.);

5) Сколько было тетрадей во второй пачке первоначально?

54 – 25 = 29 (шт.).

В 5 классе, вероятнее всего, ученик выберет именно такой способ решения задачи. А предложите ему решить эту задачу в 6 ил 7 классе. Возможно, ситуация изменится, и ученик будет решать ее с помощью уравнения. Выполняя те же действия, он не будет задумываться над многочисленными вопросами. Выбирая уравнение как средство решения задачи, очень быстро придет к тому же ответу.

Как же тогда будет выглядеть решение?

Пусть х тетрадей стало в каждой пачке после перекладывания,

тогда (х + 10) тетрадей было первоначально в первой пачке, а

(х + 14) тетрадей было первоначально во второй пачке.

Зная, что в двух пачках было 54 тетради, можно составить уравнение:

х + 10 + х + 14 = 54

В уравнении прослеживаются все те же действия, которые выполняются при арифметическом способе решения задачи.

х + х + (10 + 14) = 54; (1 действие арифметического способа)

2х = 54 – 24; (2 действие)

х = 30:2; (3 действие)

15 + 10 = 25 (шт.) (4 действие)

15 + 14 = 29 (шт.) (5 действие)

Ответ: 25 тетрадей, 29 тетрадей.

Но при этом никто не задает вопросов, что мы находим при выполнении каждого шага.

Своим ученикам я всегда показываю, что текст задач для 5-х или 9-х классов зачастую одинаков по смыслу. И практика показывает, что пятиклассники в состоянии разобраться с условием из задачника для 9 класса и даже составить уравнение. Решить такое уравнение, конечно же, пока не хватает знаний. Но при этом не каждому девятикласснику удается решить арифметическим способом задачу для 5 класса.

Школьники, обычно, выбирают алгебраический способ решения текстовых задач, к арифметическому они практически никогда не возвращаются. Они просто перестают видеть этот способ, увлекаясь введением переменных и составлением уравнений.

За что же мы ценим арифметический способ решения текстовых задач? Первое и главное за то, что при выполнении каждого арифметического действия учащийся задумывается над тем: «А что я нашел в результате?» Он представляет, о чем идет речь в задаче, так как каждое действие имеет наглядное и конкретное истолкование. В результате активно развивается логическое мышление. В процессе вычислений, измерений, поиска решения задач у ученика формируются познавательные универсальные учебные действия, формирование которых является важнейшей задачей современной системы основного общего образования.

Текстовые задачи изучаются в течение всего школьного курса математики. Но научить понимать задачи, анализировать условие, рассуждать и находить рациональные способы решения необходимо именно в 5-6 классах, пока уровень сложности их невелик, а сама задача является одной из самых важных категорий. На легком постигается сложное.

Использование арифметических способов решения задач развивает смекалку и сообразительность, умение ставить вопросы, отвечать на них, то есть, развивает естественный язык, готовит школьников к дальнейшему обучению.

Арифметические способы решения текстовых задач позволяют строить план решения с учетом взаимосвязей между известными и неизвестными величинами (с учетом типа задачи), истолковывать результат каждого действия в рамках условия задачи, проверять правильность решения с помощью составления и решения обратной задачи, то есть, формировать и развивать важные общеучебные умения и навыки.

Если ученик справляется с текстовыми задачами на уроках математики, то есть может проследить и пояснить логическую цепочку своего решения, дать характеристику всех величин, то он также успешно может решать задачи по физике и химии, он умеет сравнивать и анализировать, преобразовывать информацию на всех учебных предметах школьного курса.

Великий Д.Пойа сказал: “Если вы хотите научиться плавать, то смело входите в воду, а, если хотите научиться решать задачи, то решайте их”. Если мы научим детей решать задачи - мы не только повысим интерес к самому предмету, окажем значительное влияние на формирование их математического мышления, что способствует успешному освоению новых знаний в других областях.

На основании похожести по математическому смыслу и взаимозаменяемости разных приемов решения все арифметические способы можно объединить в такие группы:

  • 1) способ приведения к единице, приведение к общей мере, обратного приведения к единице, способ отношений;
  • 2) способ решения задач с «конца»;
  • 3) способ исключения неизвестных (замена одного неизвестного другим, сравнение неизвестных, сравнение данных, сравнение двух условий вычитанием, объединение двух условий в одно); способ предположения;
  • 4) пропорциональное деление, подобие или нахождение частей;
  • 5) способ преобразования одной задачи в другую (разложение сложной задачи на простые, подготовительные; приведение неизвестных к таким значениям, для которых становится известным их отношение; прием определения произвольного числа для одной из неизвестных величин).

Кроме названных способов целесообразно рассматривать еще способ среднего арифметического, метод излишек, способ перестановки известного и неизвестного, способ «фальшивых» правил.

Посколько обычно невозможно наперед определить, какой из способов является найрациональным, предвидеть, какой их них приведет к простейшему и самому понятному для ученика решению, то учащихся стоит познакомить с разными способами и давать им возможность самим выбирать, какой из них применить при решении конкретной задачи.

Способ исключения неизвестных

Этот способ используется, когда в задаче несколько неизвестных. Такую задачу можно решить с помощью одного из пяти приемов: 1) замена одного неизвестного другим; 2) сравнение неизвестных; 3) сравнение двух условий вычитанием; 4) сравнение данных; 5) объединение нескольких условий в одну.

В результате применения одного из перечисленных приемов вместо нескольких неизвестных остается одно, которое можно найти. Вычислив его, используют данные в условии зависимости для нахождения других неизвестных.

Остановимся детальнее на рассмотрении некоторых из приемов.

1. Замена одного неизвестного другим

Название приема раскрывает его идею: на основании зависимостей (кратных или разностных), какие даны по условию задачи, необходимо выразить все неизвестные через одно из них.

Задача. У Сергея и Андрея всего 126 марок. У Сергея на 14 марок больше, чем у Андрея. Сколько марок было у каждого из мальчиков?

Краткая запись условия:

Сергей -- ? марок, на 14 марок больше

Андрей -- ? марок

Всего -- 126 марок

Решение 1.

  • (замена большего неизвестного меньшим)
  • 1) Пусть у Сергея было столько марок, как и у Андрея. Тогда общее количество марок было бы 126 -- 14 = 112 (марок).
  • 2) Так как у мальчиков теперь одинаковое количество марок, то найдем, сколько марок было у Андрея сначало: 112: 2 = 56 (марок).
  • 3) Учитывая, что у Сергея на 14 марок больше, чем у Андрея, получаем: 56 + 14 = 70 (марок).

Решение 2.

  • (замена меньшего неизвестного большим)
  • 1) Пусть у Андрея было столько же марок, как и у Сергея. Тогда общее количество марок было бы 126 + 14 = 140 (марок).
  • 2) Так как у мальчиков теперь одинаковое количество марок, то найдем, сколько марок было у Сергея сначало: 140: 2 = 70 (марок).
  • 3) Учитывая, что у Андрея было на 14 марок меньше, чем у Сергея, получим: 70 -- 14 = 56 (марок).

Ответ: У Сергея было 70 марок, а у Андрея -- 56 марок.

Для наилучшего усвоения учащимися способа замены меньшего неизвестного большим перед его рассмотрением необходимо выяснить с учащимися такой факт:если число А больше числа В на С единиц, то чтобы сравнить числа А и В необходимо:

  • а) из числа А вычесть число С (тогда оба числа равны числу В);
  • б) к числу В прибавить число С (тогда оба числа равны числу А).

Умение учащихся заменять большее неизвестное меньшим, и наоборот, в дальнейшем способствует развитию умений выбирать неизвестное и выражать через него другие величины при составлении уравнения.

2. Сравнение неизвестных

Задача. На четырех полках стояло 188 книг. На второй полке книг было на 16 меньше, чем на первой, на третьей -- на 8 больше, чем на второй, а на четвертой -- на 12 меньше, чем на третьей полке. Сколько книг на каждой полке?

Анализ задачи

Для лучшего осознания зависимостей между четырьмя неизвестными величинами (количеством книг на каждой полке) используем схему:

I _________________________________

II___________________________

III______________________________

IV_______________________ _ _ _ _ _

Сравнивая отрезки, которые схематически изображают количество книг на каждой полке, приходим к таким выводам: книг на первой полке на 16 больше, чем на второй; на третьей на 8 больше, чем на второй; на четвертой -- на 12 -- 8 = 4 (книг) меньше, чем на второй. Следовательно, задачу можно решить, сравнив количество книг на каждой полке. Для этого снимем с первой полки 16 книг, с третьей -- 8 книг и поставим на четвертую полку 4 книги. Тогда на всех полках будет одинаковое количество книг, а именно -- как на второй было сначало.

  • 1) Сколько книг стоит на всех полках после описанных в анализе задачи операций?
  • 188 -- 16 -- 8 + 4 = 168 (книг)
  • 2) Сколько книг было на второй полке?
  • 168: 4 = 42 (книг)
  • 3) Сколько книг было на первой полке?
  • 42 + 16 = 58 (книг)
  • 4) Сколько книг было на третьей полке?
  • 42 + 8 = 50 (книг)
  • 5) Сколько книг было на четвертой полке?
  • 50 -- 12 = 38 (книг)

Ответ: На каждой из четырех полок было 58, 42, 50 и 38 книг.

Замечание. Можно предложить учащимся решить эту задачу другими способами, если сравнивать неизвестные количество книг, которые стояли на первой, или на второй, или на четвертой полках.

3. Сравнение двух условий вычитанием

В сюжет задачи, которая решается этим приемом, часто входят две пропорциональные величины (количество товара и его стоимость, количество работников и выполненная ими работа и т. п.). В условии дается два значения одной величины и разность двух пропорциональных к ним числовых значений другой величины.

Задача. За 4кг апельсинов и 5кг бананов заплатили 620 руб, а в следующий раз за 4кг апельсинов и 3кг бананов, купленных по таким же ценам, заплатили 500 руб. Сколько стоит 1кг апельсинов и 1кг бананов?

Краткая запись условия:

  • 4кг ап. и 5кг бан. - 620 руб,
  • 4кг ап. и 3кг бан. - 500 руб.
  • 1) Сравним стоимость двух покупок. И в первый раз, и во второй раз покупали одинаковое количество апельсинов по одной и той же цене. Первый раз заплатили больше потому, что купили больше бананов. Найдем, на сколько килограммов бананов было куплено больше в первый раз: 5 -- 3 = 2 (кг).
  • 2) Найдем, на сколько больше заплатили первый раз, чем во второй (то есть узнаем, сколько стоят 2кг бананов): 620 -- 500 = 120 (руб.).
  • 3) Найдем цену 1кг бананов: 120: 2 = 60 (руб.).
  • 4) Зная стоимость первой и второй покупок, можем найти цену 1кг апельсинов. Для этого сначало найдем стоимость купленных бананов, потом стоимость апельсинов, а потом цену 1кг. Имеем: (620 -- 60*5) : 4 = 80 (руб).

Ответ: цена 1кг апельсинов -- 80 руб, а цена 1кг бананов -- 60 руб.

4. Сравнение данных

Применение данного приема дает возможность сравнить данные и применить способ вычитания. Сравнивать значения данных можно:

  • 1) с помощью умножения (сравнивая их с наименьшим общим кратным);
  • 2) с помощью деления (сравнивая их с наибольшим общим делителем).

Покажем это на примере.

Задача. За 4кг апельсинов и 5кг бананов заплатили 620 руб, а в следующий раз за 6кг апельсинов и 3кг бананов, купленных по таким же ценам, заплатили 660 руб. Сколько стоит 1кг апельсинов и 1кг бананов?

Краткая запись условия:

  • 4кг ап. и 5кг бан. - 620 руб,
  • 6кг ап. и 3кг бан. - 660 руб.

Уравняем количество апельсинов и бананов, сравнивая их с наименьшим общим кратным: НОК(4;6) = 12.

Решение1.

  • 1) Увеличим количество купленных фруктов и их стоимость в первом случае в 3 раза, а во втором -- в 2 раза. Получим такую краткую запись условия:
  • 12кг ап. и 15кг бан. - 1860 руб,
  • 12кг ап. и 6кг бан. - 1320 руб.
  • 2) Узнаем, на сколько больше бананов купили первый раз: 15- 6 = 9(кг).
  • 3) Сколько стоит 9кг бананов? 1860 -- 1320 = 540 (руб).
  • 4) Найдем цену 1кг бананов: 540: 9 = 60(руб).
  • 5) Найдем стоимость 3кг бананов: 60*3 = 180(руб).
  • 6) Найдем стоимость 6кг апельсинов: 660 -- 180 = 480(руб).
  • 7) Найдем цену 1кг апельсинов: 480: 6 = 80(руб).

Решение2.

Уравняем количество апельсинов и бананов, сравнивая их с наибольшим общим делителем: НОД (4; 6) = 2.

  • 1) Чтобы уравнять количество апельсинов, купленных в первый раз и во второй раз, уменьшим количество купленного товара и его стоимость в первом случае в 2 раза, во втором -- в 3 раза. Получим задачу, которая имеет такую краткую запись условия
  • 2кг ап. и 2,5кг бан. - 310 руб,
  • 2кг ап. и 1кг бан. - 220 руб.
  • 2) На сколько теперь бананов покупают больше: 2,5 -- 1 = 1,5 (кг).
  • 3) Найдем, сколько стоит 1,5кг бананов: 310 -- 220 = 90 (руб).
  • 4) Найдем цену 1кг бананов: 90: 1,5 = 60 (руб).
  • 5) Найдем цену 1кг апельсинов: (660 -- 60*3) : 6 = 80 (руб).

Ответ: цена 1кг апельсинов -- 80 руб, 1кг бананов -- 60 руб.

При решении задач с использованием приема сравнения данных можно не делать такого детального анализа и записей, а только сделать запись изменений, которые делали для сравнения, и записать их в виде таблицы.

5. Объединение нескольких условий в одно

Иногда избавиться от лишних неизвестных можно, объединив несколько условий в одно.

Задача. Туристы вышли из лагеря и сначала 4 часа шли пешком, а потом еще 4 часа ехали на велосипедах с некоторой постоянной скоростью и удалились от лагеря на 60км. Во второй раз они вышли из лагеря и сначала ехали на велосипедах с такой же скоростью 7 часов, а потом повернули в обратном направлении и, двигаясь пешком 4 часа, оказались на расстоянии 50км от лагеря. С какой скоростью туристы ехали на велосипедах?

В задаче два неизвестных: скорость, с какой туристы ехали на велосипедах, и скорость, с какой они шли пешком. Для того, чтобы исключить одно из них, можно объединить два условия в одно. Тогда расстояние, которое пройдут туристы за 4 часа, двигаясь вперед первый раз пешком, равно расстоянию, которое они прошли за 4 часа, двигаясь назад во второй раз. Поэтому на эти расстояния не обращаем внимания. Значит, расстояние, которое пройдут туристы за 4 + 7 =11 (час) на велосипедах, будет равно 50+60=110 (км).

Тогда скорость движения туристов на велосипедах: 110: 11 = 10 (км/ч).

Ответ.Скорость движения на велосипедах составляет 10 км/ч.

6. Способ допущения

Использование способа допущения при решении задач у большинства учащихся не вызывает трудностей. Поэтому, чтобы не возникало механического запоминания учащимися схемы шагов этого способа и непонимания сути выполненных действий на каждом из них, следует сначала показать учащимся способ проб («фальшивое правило» и «правило древних вавилонян»).

При использовании способа проб, в частности «фальшивого правила», одной из неизвестных величин дается («допускается») некоторое значение. Потом, используя все условия, находят значение другой величины. Полученное значение сверяют с тем, которое задано в условии. Если полученное значение отлично от данного в условии, то задаваемое первое значение не правильно и его необходимо увеличивать или уменьшать на 1, и снова находить значение другой величины. Так необходимо делать до тех пор, пока не получим значение другой величины такое, как в условии задачи.

Задача. У кассира есть 50 монет по 50копеек и по 10 копеек, всего на сумму 21 руб. Найдите, сколько было у кассира отдельно монет по 50к. и по 10к.

Решение1. (способ проб)

Воспользуемся правилом «древних» вавилонян. Предположим, что у кассира монет каждого номинала поровну, то есть по 25 штук. Тогда сумма денег будет 50*25 + 10*25 = 1250+250=1500 (к.), или 15 руб. Но в условии 21 руб, то есть больше, чем получили, на 21 грн -- 15 руб.= 6 руб. Значит, необходимо увеличивать количество монет по 50 копеек и уменьшать количество монет по 10 копеек, пока не получим в сумме 21 руб. Изменение количества монет и общую сумму запишем в таблицу.

Количество монет

Количество монет

Сумма денег

Сумма денег

Общая сумма

Меньше или больше, чем в условии

Меньше на 6руб.

Меньше на 5руб60к

Как в условии

Как видно из таблицы, у кассира было 40 монет по 50 копеек и 10 монет по 10 копеек.

Как выяснилось в решении 1, если бы у кассира было поровну монет по 50к. и по 10к., то всего у него было денег 15 руб. Легко заметить, что каждая замена монети 10к. на монету 50к. увеличивает общую сумму на 40к. Значит, необходимо найти, сколько необходимо сделать таких замен Для этого найдем сначала, на сколько денег необходимо увеличить общую сумму:

21 руб -- 15 руб. = 6 руб. = 600 к.

Найдем, сколько раз такую замену необходимо сделать: 600 к. : 40 к.=15.

Тогда по 50 к. будет 25 +15 =40 (монет), а монет по 10 к. останется 25 -- 15 = 10.

Проверкой подтверджается, что общая сумма денег в этом случае равна 21 руб.

Ответ: У кассира было 40 монет по 50 копеек и 10 монет по 10 копеек.

Предложив учащимся самостоятельно выбирать разные значения количества монет по 50 копеек, необходимо подвести их к идее, которая наилучшим с точки зрения рациональности есть допущение, что у кассира были только монеты одного номинала (например, все 50 монет по 50 к. или все 50 монет по 10к. каждая). Благодаря чему, одно из неизвестных исключается и заменяется другим неизвестным.

7. Способ остатков

Этот способ имеет некоторую схожесть с размышлениями при решении задач способами проб и допущений. Способ остатков используем, решая задачи на движение в одном направлении, а именно -- когда необходимо найти время, за которое первый объект, который движется позади с большей скоростью, догонит второй объект, который имеет меньшую скорость движения. За 1 час первый объект приближается ко второму на расстояние, которое равно разности их скоростей, то есть равно «остатку» скорости, которая есть у него в сравнении со скоростью второго. Чтобы найти время, которое необходимо первому объекту для преодоления расстояния, которое было между ним и вторым на начало движения, следует определить, сколько раз «остаток» помещается в этом расстоянии.

Если абстрагироваться от сюжета и рассмотреть только математическую структуру задачи, то в ней говорится о двух множителях (скорости движения обоих объектов) или разнице этих множителей и о двух произведениях (расстояния, которые они проходят) или их разность. Неизвестные множители (время) одинаковые и их необходимо найти. С математической точки зрения неизвестный множитель показывает, сколько раз разность известных множителей содержится в разности произведений. Поэтому задачи, которые решаются способом остатков, получили название задач на нахождение чисел по двум разностям.

Задача. Учащиеся решили наклеить в альбом фотографии с праздника. Если они на каждую страницу наклеют по 4 фотографии, то в альбоме не хватит места для 20 фотографий. Если же на каждую страницу клеить по 6 фотографий, то 5 страниц останутся свободными. Сколько фотографий собираются учащиеся наклеить в альбом?

Анализ задачи

Количество фотографий остается одинаковым при первом и втором вариантах наклеивания. По условию задачи оно неизвестно, но его можно найти, если будет известно количество фотографий, которые размещаются на одной странице, и количество страниц в альбоме.

Количество фотографий, которые наклеивают на одну страницу, известно (первый множитель). Количество страниц в альбоме неизвестно и остается неизменным (второй множитель). Так как известно, что 5 страниц альбома остаются во второй раз свободными, то можно найти, сколько еще фотографий можно было бы наклеить в альбом: 6*5 = 30 (фотографий).

Значит, увеличивая количество фотографий на одной странице на 6 - 4 = 2, количество наклеенных фотографий увеличивается на 20 + 30 = 50.

Так как во второй раз на каждую страницу наклеивали на две фотографии больше и всего наклеили на 50 фотографий больше, то найдем количество страниц в альбоме: 50: 2 = 25 (стр.).

Следовательно, всего фотографий было 4*25 + 20 = 120 (фотографий).

Ответ: В альбоме было 25 страниц и клеили 120 фотографий.