Основные закономерности наследования впервые были разработаны Грегором Менделем. Любой организм обладает многими наследственными признаками. Наследование каждого из них Г. Мендель предложил изучать независимо от того, что наследуется другими. Доказав возможность наследования одного признака независимо от других, он тем самым показал, что наследственность делима и генотип состоит из отдельных единиц, определяющих отдельные признаки и относительно независимых друг от друга. Выяснилось, что, во-первых, один и тот же ген может оказывать влияние на несколько различных признаков и, во-вторых, гены взаимодействуют друг с другом. Это открытие стало основой для разработки современной теории, рассматривающей генотип как целостную систему взаимодействующих генов. Согласно этой теории, влияние каждого отдельного гена на признак всегда зависит от остальной генной конституции (генотипа) и развитие каждого организма есть результат воздействия всего генотипа. Современные представления о взаимодействии генов представлены на Рис. 1.

Рис. 1. Схема взаимодействия генов ()

Аллельные гены - гены, определяющие развитие одного и того же признака и расположенные в идентичных участках гомологичных хромосом.

При полном доминировании доминантный ген полностью подавляет проявление рецессивного гена.

Неполное доминирование носит промежуточный характер. При этой форме взаимодействия генов все гомозиготы и гетерозиготы сильно отличаются друг от друга по фенотипу.

Кодоминирование - явление, при котором у гетерозигот проявляются оба родительских признака, то есть доминантный ген в полной мере не подавляет действие рецессивного признака. Примером может служить окрас шерсти коров шортгорнской породы, доминантная окраска - красная, рецессивная - белая, а гетерозигот имеет чалую окраску - часть волосков красного и часть волосков белого цветов (Рис. 2).

Рис. 2. Окрас шерсти коров шортгорнской породы ()

Это пример взаимодействия двух генов.

Известны и другие формы взаимодействия, когда вступают во взаимодействие три и более гена - такой тип взаимодействия носит название множественный аллелизм . За проявление таких признаков отвечают несколько генов, два из которых могут находиться в соответствующих локусах хромосом. Наследование групп крови у человека - пример множественного аллелизма. Группа крови у человека контролируется аутосомным геном, его локус обозначается I, три его аллели обозначаются А, В, 0. А и В - кодоминантны, О - рецессивен по отношению к обоим. Зная, что из трех аллелей в генотипе может быть только две, мы можем предположить, что сочетания могут быть соответствующими четырем группам крови (Рис. 3).

Рис. 3. Группы крови человека ()

Для закрепления материала решите следующую задачу.

Определите, какие группы крови могут быть у ребенка, родившегося от брака между мужчиной, имеющим первую группу крови - I(0) и женщины, имеющей четвертую группу крови - IV(AB).

Неаллельные гены - это гены, расположенные в различных участках хромосом и кодирующие неодинаковые белки. Неаллельные гены могут взаимодействовать между собой. Во всех случаях взаимодействия генов менделевские закономерности строго соблюдаются, при этом либо один ген обуславливает развитие нескольких признаков, либо, наоборот, один признак проявляется под действием совокупности нескольких генов. Взаимодействие неаллельных генов проявляется в четырех основных формах: эпистаз, комплементарность, полимерия и плейотропия.

Комплементарность - тип взаимодействия генов, при котором признак может проявляться в случае нахождения двух или более генов в генотипе. Так, в образовании хлорофилла у ячменя принимают участие два фермента, если они находятся в генотипе вместе - развивается зеленая окраска хлорофилл, если находится только один ген - растение будет иметь желтую окраску. В случае отсутствия обоих генов растение будет иметь белый окрас и будет нежизнеспособно.

Эпистаз - взаимодействие генов, при котором один неаллельный ген подавляет проявления другого неаллельного гена. Примером служит окраска оперения у кур белых леггорнов, которая контролируется двумя группами ген:

доминантный ген - А, отвечает за белый окрас;

рецессивный ген - а, за цветную окраску;

доминантный ген - В, отвечает за черный окрас;

рецессивный ген - в, за коричневый окрас.

При этом белая окраска подавляет проявление черной (Рис. 4).

Рис. 4. Пример эпистаза белых леггорнов ()

При скрещивании дух гетерозигот, белой курицы и белого петуха, мы видим в решетке Пеннета результаты скрещивания: расщепление по фенотипу в соотношении

12 белых цыплят: 3 черных цыпленка: 1 коричневый цыпленок.

Полимерия - явление, при котором развитие признаков контролируется несколькими неаллельными генами, располагающимися в разных хромосомах.

Чем больше доминантных аллелей данного гена, тем больше выраженность данного признака. Примером полимерии является наследование цвета кожи у человека. За окраску цвета кожи у человека отвечает две пары генов:

если все четыре аллели этих генов будут доминантны, то проявится негроидный тип окраски кожи;

если один их генов будет рецессивный - окраска кожи будет темного мулата;

если две аллели будут рецессивными - окраска будет соответствовать среднему мулату; если будет оставаться только одна доминантная аллель - окраска будет светлого мулата; если рецессивны все четыре аллели - окраска будет соответствовать европеоидному типу кожи (Рис. 5).

Рис. 5. Полимерия, наследование цвета кожи человеком ()

Для закрепления материала решите задачу.

Сын белой женщины и чернокожего мужчины женился на белокожей женщине. Может ли сын, рожденный от такого брака, оказаться темнее своего отца?

Плейотропия - взаимодействие, при котором один ген контролирует развитие нескольких признаков, то есть один ген отвечает за формирование фермента, который влияет не только на свою реакцию, но и оказывает влияние на вторичные реакции биосинтеза.

Примером может являться синдром Марфана (Рис. 6), который вызывается мутантным геном, приводящим к нарушению развития соединительной ткани.

Рис. 6. Синдром Марфана ()

Такое нарушение приводит к тому, что у человека формируются вывих хрусталика глаза, пороки клапана сердца, длинные и тонкие пальцы, пороки развития сосудов и частые вывихи суставов.

Сегодня мы узнали, что генотип - это не простая совокупность генов, а система сложного взаимодействия между ними. Формирование признака есть результат совместного действия нескольких генов.

Список литературы

  1. Мамонтов С.Г., Захаров В.Б., Агафонова И.Б., Сонин Н.И. Биология. Общие закономерности. - Дрофа, 2009.
  2. Пономарева И.Н., Корнилова О.А., Чернова Н.М. Основы общей биологии. 9 класс: Учебник для учащихся 9 класса общеобразовательных учреждений/Под ред. проф. И.Н. Пономаревой. - 2-е изд., перераб. - М.: Вентана-Граф, 2005.
  3. Пасечник В.В., Каменский А.А., Криксунов Е.А. Биология. Введение в общую биологию и экологию: Учебник для 9 класса, 3-е изд., стереотип. - М.: Дрофа, 2002.
  1. Volna.org ().
  2. Bannikov.narod.ru ().
  3. Studopedia.ru ().

Домашнее задание

  1. Дать определение аллельным генам, назвать их формы взаимодействия.
  2. Дать определение неаллельным генам, назвать их формы взаимодействия.
  3. Решить задачи, предложенные к теме.

Гены, контролирующие развитие одного и того же признака (например, окраску цветков), будь то аллельные или неаллельные, не могут действовать абсолютно независимо. Генотип — это не простая сумма составляющих его генов, это — сложная система, основанная на межаллельных и неаллельных взаимодействиях. Взаимодействие осуществляется на уровне белковых продуктов, которые вырабатываются под контролем генов.

Различные типы доминирования обусловлены взаимодействием аллельных генов . Полное доминирование далеко не всегда означает, что функция рецессивного гена полностью подавлена, и он не функционирует. Например, у львиного зева красная окраска цветов доминирует над светло-красной. Однако оба аллельных гена , доминантный и рецессивный, экспрессируются, т.е обеспечивают выработку фермента, катализирующего синтез пигмента. Но под контролем рецессивного гена вырабатывается неактивная форма фермента, которая не может обеспечить конечный этап выработки красного пигмента (цианидина). В результате у рецессивных гомозигот образуется только его предшественник — светло-красный пигмент (пеларгонидин). В гетерозиготе работа доминантного гена полностью обеспечивает превращение светло-красного пигмента в красный.

Характер доминирования может изменяться под влиянием внешних условий. Так, например, у пшеницы в обычных условиях доминирует нормальный колос, а при коротком световом дне — ветвистый. Но изменение характера доминирования не приводит к изменению генотипа и не изменяет расщепление в гибридном потомстве.

Взаимодействие аллельных генов особенно наглядно можно проследить на примере явления множественного аллелизма . Этим термином обозначают существование нескольких (иногда многих) аллелей одного и того же гена, которые образуют серию множественных аллелей. Такие серии известны у многих животных и растений; у дрозофилы число их достигает нескольких десятков.

Классическим примером множественного аллелизма является серия генов, контролирующих окраску глаз у дрозофилы. В нее входят 12 мутантных генов, которые определяют различные типы окраски: от белой до темно-красной, характерной для мух дикого типа.

Все члены серии множественных аллелей обозначаются одной и той же буквой (начальной в английском названии первого члена серии). К ней добавляется индекс в виде одной или двух букв — первых в названии данного члена серии. Например: начальный член вышеуказанной серии по окраске глаз у дрозофилы — рецессивная мутация white (белые глаза) обозначается как w , один из последующих мутантных членов серии как w a (apricot — абрикосовые глаза), а доминантный ген дикого типа — как W .

Все члены серии представляют собой мутантные формы одного того же гена дикого типа и поэтому занимают один и тот же локус в хромосоме. При нормальном (диплоидном) количестве хромосом в генотипе могут быть представлены только два члена этой серии.

Каждый из мутантных генов серии образует аллельную пару с любым другим членом серии, и все они аллельны одному гену дикого типа, вызывающему нормальную (красную) окраску глаз дрозофилы. Он является доминантным по отношению к любому другому члену серии. Если же в генотипе представлены два мутантных аллеля, то такие особи носят название компаундов. Для них характерно промежуточное состояние признака. Так, например, у гетерозигот по генам white и apricot окраска глаз желтая. Отличие взаимодействия аллельных генов от неаллельных заключается в том, что у гетерозигот по двум мутантным аллелям их действие не является комплементарным и не обеспечивает возврата к признаку дикого типа.

Серия аллельных генов по окраске глаз у дрозофилы

В некоторых сериях множественных аллелей ген дикого типа может быть рецессивным по отношению к мутантному гену. Это указывает на то, что мутировать ген может в разных направлениях: как в сторону доминантности, так и в сторону рецессивности. Примером такой ситуации служит серия из трех генов у дрозофилы: Truncate (T dp — обрезанные крылья) — Normal dumpy (dp — укороченные крылья).

Серии множественных аллелей обнаружены у мышей (окраска шерсти), кролика, соболя и лисицы (окраска меха), у гречихи, табака (самонесовместимость), у человека (гены группы крови) и др. Комбинирование алелльных мутаций широко используется селекционерами для получения новых ценных признаков.

Разная окраска меха кроликов, определяемая генами серии множественных аллелей.

У человека хорошо известна серия множественных аллелей, контролирующих группы крови системы АВ0. В нее входит три неаллельных гена: I A , I B и i. Доминантные гены I A и I B взаимодействуют между собой по типу кодоминирования и оба полностью доминируют над рецессивным геном i. В зависимости от сочетания этих генов формируется та или иная группа крови у человека.

Генотип Группа крови
ii I, 00
I A I A , I A i II, AA, A0
I B I B , I B i III, BB, B0
I A I B IV, AB

Перейти к чтению других тем книги "Генетика и селекция. Теория. Задания. Ответы" .

В состав генотипа человека входит огромное количество генов, которые несут информацию о свойствах и качествах нашего организма. Несмотря на такое большое количество, они взаимодействуют как единая целостная система.

Из школьного курса биологии нам известны законы Менделя, который изучал закономерности наследования признаков. В ходе своих исследований ученый обнаружил доминантные гены и рецессивные. Одни способны подавлять проявление других.

На самом деле взаимодействие генов далеко выходит за рамки менделевских законов, хотя все правила наследования соблюдаются. Можно увидеть разницу в характере расщепления по фенотипу, потому что может отличаться тип взаимодействия.

Характеристики гена

Ген является единицей наследственности, он имеет определенные признаки:

  1. Ген дискретен. Он определяет степень развития того или иного признака, в том числе и особенности биохимических реакций.
  2. Оказывает градуальное действие. Накапливаясь в клетках тела, может приводить к усилению или ослаблению проявления признака.
  3. Все гены строго специфичны, то есть отвечают за синтез определенного белка.
  4. Один ген может оказывать множественное действие, воздействуя на развитие сразу нескольких признаков.
  5. Разные гены могут принимать участие в формировании одного признака.
  6. Все гены между собой могут взаимодействовать.
  7. На проявление действия гена оказывает влияние внешняя среда.

Гены способны действовать на двух разных уровнях. Первый - это сама генетическая система, в которой определяется состояние генов и их работа, стабильность и изменчивость. Второй уровень можно рассматривать уже при работе в клетках организма.

Виды взаимодействия аллельных генов

Все клетки нашего организма имеют диплоидный набор хромосом (его еще называют двойным). 23 хромосомы яйцеклетки сливаются с таким же количеством хромосом сперматозоида. То есть каждый признак представлен двумя аллелями, вот их и называют аллельными генами.

Формируются такие аллельные пары при оплодотворении. Они могут быть как гомозиготными, то есть состоящими из одинаковых аллелей, так и гетерозиготными, если входят разные аллели.

Формы взаимодействия аллельных генов наглядно представлены в таблице.

Тип взаимодействия Характер взаимодействия Пример
Полное доминирование Доминантный ген полностью подавляет проявление рецессивного. Наследование цвета горошины, цвета глаз у человека.
Неполное доминирование Доминантный ген не полностью подавляет проявление рецессивного гена. Окраска цветов у ночной красавицы (цветка).
Кодоминирование В гетерозиготном состоянии каждый из аллельных генов вызывает развитие контролируемого им признака. Наследование группы крови у человека.
Сверхдоминирование В гетерозиготном состоянии признаки проявляются ярче, чем в гомозиготном. Ярким примером является явление гетерозиса в животном и растительном мире, серповидно-клеточная анемия у человека.

Полное и неполное доминирование

О полном доминировании можно говорить в том случае, когда один из генов может обеспечить проявление признака, а второй не в состоянии это сделать. Сильный ген получает название доминантного, а его оппонент - рецессивного.

Наследование в этом случае происходит полностью по законам Менделя. Например, окраска семян гороха: мы в первом поколении видим все горошины зеленого цвета, то есть эта окраска является доминантным признаком.

Если при оплодотворении вместе попадают ген карих глаз и голубых, то у ребенка глаза будут карими, потому что эта аллель полностью подавляет ген, который отвечает за голубые глаза.

При неполном доминировании можно видеть у гетерозигот проявление промежуточного признака. Например, при скрещивании гомозиготной по доминантному признаку ночной красавицы с красными цветами с такой же особью, только с белым венчиком, можно в первом поколении видеть гибриды розового цвета. Доминантный красный признак не полностью подавляет проявление рецессивного белого, поэтому в итоге и получается что-то среднее.

Кодоминирование и сверхдоминирование

Такое взаимодействие генов, при котором каждый обеспечивает свой признак, называется кодоминированием. Все гены в одной аллельной паре абсолютно равнозначны. Ни один не может подавить действие другого. Именно такое взаимодействие генов мы наблюдаем при наследовании групп крови у человека.

Ген О обеспечивает проявление 1-й группы крови, ген А - второй, ген В - третей, а если гены А и В попадают вместе, то ни один не может подавить проявление другого, поэтому формируется новый признак - 4 группа крови.

Сверхдоминирование - это еще один пример взаимодействия аллельных генов. В этом случае гетерозиготные особи по данному признаку имеют более яркое его проявление по сравнению с гомозиготными. Такое взаимодействие генов лежит в основе такого явления, как гетерозис (явление гибридной силы).

При скрещивании двух сортов томатов, например, получается гибрид, который наследует признаки обоих исходных организмов, так как признаки переходят в гетерозиготное состояние. В следующем поколении уже пойдет расщепление по признакам, поэтому такое же потомство получить не удастся.

В животном мире можно и вовсе наблюдать бесплодие таких гибридных форм. Такие примеры взаимодействия генов можно встретить часто. Например, при скрещивании осла и кобылицы рождается мул. Он унаследовал все лучшие качества своих родителей, а вот сам иметь потомство не может.

У человека по этому типу наследуется серповидно-клеточная анемия.

Неаллельные гены и их взаимодействие

Гены, которые расположены в разных парах хромосом, называются неаллельными. Если они оказываются вместе, то вполне могут оказывать друг на друга влияние.

Взаимодействие неаллельных генов может осуществляться по-разному:

  1. Комплементарность.
  2. Эпистаз.
  3. Полимерное действие.
  4. Плейотропность.

Все эти типы взаимодействия генов имеют свои отличительные особенности.

Комплементарность

При таком взаимодействии один доминантный ген дополняет другой, который также доминантный, но не является аллельным. Попадая вместе, они способствуют проявлению совершенно нового признака.

Можно привести пример проявления окраски у цветов душистого горошка. Наличие пигмента, а значит, окраски у цветка обеспечивается сочетанием двух генов - А и В. Если хоть один из них будет отсутствовать, то венчик будет белым.

У людей такое взаимодействие неаллельных генов наблюдается при формировании органа слуха. Нормальный слух может быть только, если присутствуют оба гена - D и E - в доминантном состоянии. При наличии только одного доминантного или обоих в рецессивном состоянии слух отсутствует.

Эпистаз

Такое взаимодействие неаллельных генов полностью противоположно предыдущему взаимодействию. В этом случае один неаллельный ген способен подавлять проявление другого.

Формы взаимодействия генов в этом варианте могут быть разные:

  • Доминантный эпистаз.
  • Рецессивный.

При первом типе взаимодействия один доминантный ген подавляет проявление другого доминантного. В рецессивном эпистазе участвуют рецессивные гены.

По такому типу взаимодействия происходит наследование окраски плодов у тыквы, окраски шерсти у лошадей.

Полимерное действие генов

Такое явление можно наблюдать, когда несколько доминантных генов отвечают за проявление одного и того же признака. Если присутствует хоть одна доминантная аллель, то признак обязательно проявится.

Виды взаимодействия генов в этом случае могут быть разными. Одним из них является накопительная полимерия, когда степень проявления признака зависит от количества доминантных аллелей. Так происходит наследование окраски зерен пшеницы или цвета кожных покровов у человека.

Всем известно, что все люди имеют разный цвет кожи. У одних она совершенно светлая, некоторые имеют смуглую кожу, а представители негроидной расы - и вовсе черную. Ученые придерживаются мнения, что цвет кожи определяется наличием трех разных генов. Например, если в генотипе присутствуют все три в доминантном состоянии, то кожа самая темная, как у негров.

У европеоидной расы, судя по цвету нашей кожи, доминантные аллели отсутствуют.

Уже давно выяснили, что взаимодействие неаллельных генов по типу полимерии влияет на большинство количественных признаков у человека. Сюда можно отнести: рост, массу тела, интеллектуальные способности, устойчивость организма к инфекционным заболеваниям и некоторые другие.

Можно только отметить, что развитие таких признаков зависит от условий среды. У человека может быть предрасположенность к лишнему весу, но при соблюдении режима питания есть возможность избежать этой проблемы.

Плейотропное действие генов

Уже давно ученые убедились, что типы взаимодействия генов достаточно неоднозначные и очень разносторонние. Порой невозможно предсказать проявление тех или иных фенотипических признаков, потому что неизвестно, как гены провзаимодействуют между собой.

Это утверждение только подчеркивается тем явлением, что один ген может оказывать влияние на формирование нескольких признаков, то есть иметь плейотропное действие.

Уже давно замечено, что наличие красного пигмента в плодах свеклы обязательно сопровождается присутствием такого же, но только в листьях.

У человека известно такое заболевание, как синдром Марфана. Оно связано с дефектом гена, который отвечает за развитие соединительной ткани. В итоге получается, что везде, где есть в организме эта ткань, могут наблюдаться проблемы.

У таких больных длинные «паучьи» пальцы, диагностируется вывих хрусталика глаза, порок сердца.

Влияние факторов среды на действие генов

Влияние внешних факторов среды на развитие организмов невозможно отрицать. К ним можно отнести:

  • Питание.
  • Температуру.
  • Свет.
  • Химический состав почвы.
  • Влажность и т. д.

Факторы внешней среды являются основополагающими в процессах отбора, наследственности и изменчивости.

Когда мы рассматриваем формы взаимодействия аллельных генов или неаллельных, то всегда нужно учитывать еще и воздействие среды. Можно привести такой пример: если растения примулы скрещивать при температуре 15-20 градусов, то все гибриды первого поколения будут иметь розовую окраску. При температуре 35 градусов все растения получатся белыми. Вот вам и влияние фактора внешней среды на проявление признаков, здесь уже не важно, какой ген является доминантным. У кроликов, оказывается, цвет шерсти также зависит от температурного фактора.

Ученые давно работают над вопросом, как можно управлять проявлениями признаков, оказывая различное внешнее воздействие. Это может обеспечить возможность контролировать развитие врожденных признаков, что особенно актуально для человека. Почему бы не воспользоваться своими знаниями, чтобы не дать некоторым наследственным недугам проявиться?

Все виды взаимодействия аллельных генов, да и не только их, могут быть настолько разными и многогранными, что невозможно отнести их к какому-то конкретному типу. Можно утверждать только одно, что все эти взаимодействия одинаково сложны как у людей, так и у представителей всех видов растений и животных.

Взаимодействие между аллельными генами осуществляется в виде трех форм: полное доминирование, неполное доминирование и независимое проявление (кодоминирование).

Полное доминирование – когда один доминантный аллель полностью подавляет проявление рецессивного аллеля, например, желтая окраска горошин доминирует над зеленой.

Неполное доминирование наблюдается в том случае, когда один ген из пары аллелей не обеспечивает образование в достаточном для нормального проявления признака его белкового продукта. При этой форме взаимодействия генов все гетерозиготы и гомозиготы значительно отличаются по фенотипу друг от друга. Примером расщепления при неполном доминировании может служить наследование окраски цветков Ночной красавицы.

При скрещивании растений с красными цветками (АА) и растений с белыми (аа) гибриды F1 имеют розовые цветки (Аа). Таким образом, имеет место неполное доминирование; в F2 наблюдается расщепление 1: 2: 1 как по фенотипу, так и по генотипу.

Кроме полного и неполного доминирования известны случаи отсутствия доминантно-рецессивных отношений или кодоминирования. При кодоминировании у гетерозиготных организмов каждый из аллельных генов вызывает формирование в фенотипе контролируемого им признака.

Примером этой формы взаимодействия аллелей служит наследование групп крови человека по системе АВ0, детерминируемых геном I. Существует три аллеля этого гена Io, Ia, Ib, определяющие антигены групп крови. Наследование групп крови иллюстрирует также явление множественного аллелизма: в генофондах популяций человека ген I существует в виде трех разных аллелей, которые комбинируются у отдельных индивидуумов только попарно. До этого примера мы говорили о генах, существующих только в двух разных аллельных формах. Однако многие гены состоят из сотен пар нуклеотидов, так что мутации могут проходить во многих участках гена и порождать множество различных его аллельных форм. Так как в каждой из гомологичной хромосом имеется по одному аллельному гену, то, разумеется, диплоидный организм имеет не более двух из серии аллелей генофонда популяции.

30. Неаллельные взаимодействия генов

Неаллельные гены - это гены, расположенные в различных участках хромосом и кодирующие неодинаковые белки. Неаллельные гены также могут взаимодействовать между собой.

При этом либо один ген обусловливает развитие нескольких признаков, либо, наоборот, один признак проявляется под действием совокупности нескольких генов. Выделяют три формы и взаимодействия неаллельных генов:

комплемментарность;

полимерия.

Комплементарное (дополнительное) действие генов - это вид взаимодействия неаллельных генов, доминантные аллели которых при совместном сочетании в генотипе обусловливают новое фенотипическое проявление признаков. При этом расщепление гибридов F2 по фенотипу может происходить в соотношениях 9:6:1, 9:3:4, 9:7, иногда 9:3:3:1. Примером комплементарности является наследование формы плода тыквы. Наличие в генотипе доминантных генов А или В обусловливает сферическую форму плодов, а рецессивных - удлинённую. При наличии в генотипе одновременно доминантных генов А и В форма плода будет дисковидной. При скрещивании чистых линий с сортами, имеющими сферическую форму плодов, в первом гибридном поколении F1 все плоды будут иметь дисковидную форму, а в поколении F2 произойдёт расщепление по фенотипу: из каждых 16 растений 9 будут иметь дисковидные плоды, 6 - сферические и 1 - удлинённые.

Эпистаз - взаимодействие неаллельных генов, при котором один из них подавляется другим. Подавляющий ген называется эпистатичным, подавляемый - гипостатичным. Если эпистатичный ген не имеет собственного фенотипического проявления, то он называется ингибитором и обозначается буквой I. Эпистатическое взаимодействие неаллельных генов может быть доминантным и рецессивным. При доминантном эпистазе проявление гипостатичного гена (В, b) подавляется доминантным эпистатичным геном (I > В, b). Расщепление по фенотипу при доминантном эпистазе может происходить в соотношении 12:3:1, 13:3, 7:6:3. Рецессивный эпистаз - это подавление рецессивным аллелем эпистатичного гена аллелей гипостатичного гена (i > В, b). Расщепление по фенотипу может идти в соотношении 9:3:4, 9:7, 13:3.

Полимерия - взаимодействие неаллельных множественных генов, однозначно влияющих на развитие одного и того же признака; степень проявления признака зависит от количества генов. Полимерные гены обозначаются одинаковыми буквами, а аллели одного локуса имеют одинаковый нижний индекс.

Полимерное взаимодействие неаллельных генов может быть кумулятивным и некумулятивным. При кумулятивной (накопительной) полимерии степень проявления признака зависит от суммирующего действия генов. Чем больше доминантных аллелей генов, тем сильнее выражен тот или иной признак. Расщепление F2 но фенотипу происходит в соотношении 1:4:6:4:1.

При некумулятивной полимерии признак проявляется при наличии хотя бы одного из доминантных аллелей полимерных генов. Количество доминантных аллелей не влияет на степень выраженности признака. Расщепление по фенотипу происходит в соотношении 15:1.

Пример: цвет кожи у людей, который зависит от четырёх генов.

Если несколько генов определяют одно свойство организма (окраску цветка, длину шерсти и др.), то они взаимодействуют друг с другом. При этом в потомстве дигетерозиготы может наблюдаться необычное расщепление - 9:3:4; 9:7; 9:6:1; 13:3; 12:3:1; 15:1. Генетический анализ показывает, что необычные расщепления по фенотипу в F 2 представляют видоизменение общей менделевской формулы 9:3:3:1. Известны случаи вза­имодействия трех и большего числа генов с изменением обыч­ных формул расщепления.

Наиболее часто встречаются 3 формы взаимодействия неаллельных генов: кооперация, комплементарность, эпистаз и полимерия.

Комплементарность - явление, когда признак развивается только при взаимном действии двух доминантных неаллельных генов, каждый из которых в отдельности не вызывает развитие признака.

Эпистаз - явление, когда один ген (как доминантный, так и рецессивный) подавляет действие другого (неаллельного) гена (как доминантного, так и рецессивного). Ген-подавитель (супрессор) может быть доминантным (доминантный эпистаз) или рецессивным (рецессивный эпистаз).

Полимерия - явление, когда несколько неаллельных доминантных генов отвечают за сходное воздействие на развитие одного и того же признака. Чем больше таких генов присутствуют в генотипе, тем ярче проявляется признак. Явление полимерии наблюдается при наследовании количественных признаков (цвет кожи, вес тела, удойность коров).

В противоположность полимерии наблюдается такое явление, как плейотропия - множественное действие гена, когда один ген отвечает за развитие нескольких признаков.

Комплементарность. Комплементарными или дополнитель­ными называют такие доминантные гены, которые при совместном нахождении в генотипе (А-В-) обусловливают развитие нового признака по сравнению с действием каждого гена, в отдельности (A-bb или ааВ-).

Расщепление 9:3:3:1. Так, у дрозофилы встречается коричневая и ярко-красная окраска глаз. Обе эти окраски ре­цессивны к красной окраске (дикий тип). При скрещивании мух с коричневыми и ярко-красными глазами гибриды F 1 оказы­ваются красноглазыми, а в F 2 наблюдается расщепление на 4 фенотипических класса в отношении 9/16 красные: 3/16- ярко-красные: 3/16 коричневые и 1/16 белые (рис. 2).

Отличие исходных форм по одной паре признаков могло бы свидетельствовать о моногенных различиях между ними. Од­нако в F 1 вместо доминирования одного из признаков появ­ляется новое качество - красная окраска, а в F 2 осуще­ствляется дигибридное расщепление с тем лишь отличием от менделевского, что оно идет по одному, а не по двум свойствам (только окраска глаз). При этом здесь проявляется еще один новый признак - белый цвет глаз. Таким образом, генетический анализ свидетельствует о том, что в этом скрещивании участвуют не одна, а две пары генов.

Рисунок 2. Наследование окраски глаз у дрозофилы (комплементарность). Окраска глаз: а -ярко-красная; в -коричневая.

Мы можем сделать вывод, что гены А и В вместе определяют красную окраску глаз дикого типа, а - ярко-красную, в - ко­ричневую. Тогда генотип мух с коричневыми глазами можно обозначить AAbb, с ярко-красными - ааВВ, генотип красногла­зых гибридов - АаВb и белоглазых мух aabb. Фенотипические радикалы полученных в F 2 классов могут быть представлены как 9 А-В-, 3 ааВ-, 3 A-bb, 1 aabb.

Биохимический анализ глазных пигментов показал, что крас­ная окраска глаз обеспечивается тремя видами пигментов: ярко-красным, коричневым и желтым.

Рецессивный ген а блокирует образование коричневого пигмента, вследствие чего разви­ваются ярко-красные глаза, другой рецессивный ген - b блоки­рует одновременно образование красного и желтого пигментов, и поэтому образуется только коричневый пигмент. В F 1 объеди­няются доминантные аллели этих генов, и поэтому синтези­руются все пигменты, дающие в совокупности красную окраску глаз. Белоглазые мухи, появляющиеся в F 2 , являются результа­том одновременного блокирования синтеза всех трех пигментов.

Аналогичное наследование встречается и у растений. На­пример, окраска плодов у томатов (Lycopersicon esculeritum) обусловливается каротиновыми пигментами, имеющими огром­ное значение в синтезе витаминов. Генетический анализ показы­вает, что красная окраска плодов определяется взаимодей­ствием комплементарных доминантных генов R и Т, оранжевые плоды образуются на растениях с генотипом R-tt, желтые - с генотипом rrТ-, промежуточные желто-оранжевые - rrtt. Здесь также расщепление в F 2 соответствует генетической формуле дигибридного скрещивания 9:3:3: 1.

Таким образом, в случае, когда каждый из двух рецес­сивных неаллеальных генов проявляет самостоятельный фенотипический эффект, расщепление в F 2 по фенотипу соответствует менделевскому отношению 9:3:3:1, так как каждый из четырех классов имеет свой особый фенотип.

Расщепление 9:7 . Если же рецессивные аллели дают одинаковый фенотипический эффект, характер расщепления меняется. Например, у белого клевера (Trifolium repens) имеются формы с высоким и низким содержанием цианида. При скрещивании их в F 1 доминирует первое свойство, а в F 2 наб­людается расщепление, близкое к отношению 3:1. Следова­тельно, эти альтернативные признаки определяются одной парой аллелей. Но иногда при скрещивании двух растений клевера с низким содержанием цианида гибриды F 1 имеют много циа­нида, а в F 2 расщепление оказывается близким к отношению 9/16 с высоким содержанием цианида и 7/16 - с низким.

Чтобы выяснить, укладывается ли это расщепление в схему дигибридного менделевского расщепления, представим, что у каждой исходной расы клевера имеется в гомозиготном состоянии лишь по одной из доминантных аллелей (LLhh или llHH), которые при взаимодействии определяют развитие циа­нида. Поскольку у гибрида первого поколения F 1: присутствуют доминантные аллели обоих генов L-H-, в его листьях будет много цианида. В F 2: происходит расщепление в отношении 9/16 L-H-: 3/16 L-hh: 3/16 llН-: 1/16 llhh. Каждый из доминантных генов самостоятельно не может обусловить выработку большого количества цианида, поэтому у растений с генотипами L-hh и llН - мало цианида, и в F 2 наблюдается расщепление по фено­типу в отношении 9: 7.

Генетический анализ нашел подтверждение в биохимическом анализе. Оказалось, что цианид в листьях клевера обра­зуется из глюкозида линамарина под действием фермента линамаразы. Химический анализ листьев клевера разных генотипов проливает свет на характер взаимодействия этих двух пар ге­нов. Экстракт растений L-H- в норме содержит цианид. Дли того чтобы цианид образовался в листьях растений L-hh, необходимо добавить линамаразу, а в 11Н- линамарин. В растениях же llhh при добавлении любого компонента цианид не образуется. Следовательно, мы можем сделать вывод, что ген L обеспечивает образование линамарина, а ген H вырабаты­вает фермент линамаразу, превращающий линамарин в цианид. Переход гена L в рецессивное состояние l прерывает реакцию образования линамарина, а ген h блокирует образование фер­мента. Таким образом, в данном случае совместный генетиче­ский и биохимический анализы дают представление о меха­низме взаимодействия генов (табл. 2).

Таблица 2

Образование цианида экстрактами растений клевера разных генотипов

Подобный тип взаимодействия генов, дающий в F 2 расщеп­ление 9:7, найден у многих растений, животных и человека. Так, например, наследуется пурпурная и белая окраска цветка у душистого горошка (Lathyrus odoratus), желтая и белая окраска коконов у шелкопряда, нормальный слух и глухота у человека и т. п.

Расщепление в F 2 по фенотипу 9: 7 есть видоизменение рас­щепления 9:3:3:1, определяемое тем, что и доминантные и рецессивные гены не имеют самостоятельного фенотипического проявления.

Расщепление 9:3:4. До сих пор были рассмотрены примеры комплементарного взаимодействия, при котором каж­дый из доминантных генов в отдельности не обладал способно­стью вызвать развитие признака. Известны, однако, случаи, когда оба доминантных комплементарных гена характери­зуются самостоятельным проявлением. В соответствии с этим меняется и характер расщепления в F 2 . Рассмотрим наследова­ние трех типов окраски шерсти у кроликов (Lepus cuninculus) - дикой рыжевато-серой (агути), черной и белой. Окраска дикого типа зависит от наличия гена, распределяющего пигмент по длине волоса. Каждая шерстинка у кроликов агути имеет посе­редине желтое кольцо, а в основании и на конце - черный пиг­мент. Такое зонарное распределение пигментов и создает окра­ску агути, свойственную всем диким грызунам.

У черных кроликов шерстинки по всей длине окрашены равномерно в черный цвет. Белые кролики с красной радужной оболочкой глаз (альбиносы) вовсе лишены пигмента.

Рисунок 3. Наследование окраски шер­сти у кроликов (комплементарность). Окрас шерсти: А – окрашенность; а - альби­низм; В - зонарная (агути); b - черная.

При скрещивании черных кроликов с белыми все гибриды оказываются агути, а в F 2 наблюдается расщепление в отно­шении 9/16 агути: 3/16 черных: 4/16 белых (рис. 3). Если прове­сти анализ этого скрещивания в начале по наличию и отсут­ствию пигмента, не обращая внимания на его качество, то мо­жно прийти к выводу, что окрашенность доминирует над неокрашенностью, а в F 2 наблюдается расщепление на 12 окра­шенных (9 + 3) и 4 белых, т. е. 3: 1. В то же время в F 2 осуще­ствляется расщепление на 9 агути и 3 черных (3: 1). Гены мо­жно обозначить следующим образом: А - наличие окраски, а - отсутствие ее, В - окраска агути, b - черная. Тогда исход­ные кролики-альбиносы являются, очевидно, гомозиготными по рецессивному гену отсутствия окраски и доминантному гену агути (ааВВ), а черные кролики - гомозиготными по доминант­ному гену наличия окраски и рецессивному гену черной окраски (ААbb). У гибридов F 1 (АаВb) вследствие взаимодействия до­минантных аллелей обоих генов развивается окраска типа агути. Такая же окраска характерна и для 9/16 особей в F 2 с геноти­пом А-В-. Черными в F 2 оказываются кролики, имеющие генотип A-bb, а белыми - все остальные (ааВ- и aabb) в силу отсут­ствия у них гена А, определяющего образование пигмента. Ген В в отсутствии гена А не проявляется.

Подобный тип наследования широко распространен в при­роде. Например, у ржи (Secale cereale) скрещивание белозер­ных растений с желтозерными дает в F 1 только зеленую окраску зерна, а в F 2 расщепление в отношении 9 зеленых: 3 желтых: 4 белых . Анало­гично наследуется белая, красная и чалая масти у крупного рогатого скота и т. п.

Расщепление 9:6:1. В ряде случаев комплементарные гены, способные к самостоятельному проявле­нию, при отсутствии дополнительного гена могут давать каждый в отдельности сходный фенотипический эффект. Характер рас­щепления дигетерозиготы в F 2 при этом также изменяется. Так, у тыквы (Cucurbita pepo) имеются сорта с разной формой плода: сферической, дисковидной и удлиненной (рис. 4). Сферическая форма плода является рецессивной но отношению к дисковид­ной. От скрещивания растений с плодами сферической формы, но имеющих разное происхождение, получаются гибридные растения, дающие дисковидные плоды. В потомстве у этих рас­тений в F2 появляются три фенотипических класса в отноше­нии: 9/16 с дисковидными плодами, 6/16 - со сферическими и 1/16 - с удлиненными. Нетрудно понять, что и здесь имеет место взаимодействие двух генов, определяющих форму плода. Каж­дый из доминантных комплементарных генов обусловливает развитие плодов сферической формы, а их взаимодействие приводит к образованию дисковидных плодов. Взаимодействие рецессивных аллелей этих генов определяет развитие плодов удлиненной формы. Таким образом, и здесь видоизменяется обычное дигибридное расщепление .

Подобный тип взаимодействия на­блюдается в наследовании окраски щетины у свиней (Sus scrofa). При скрещивании двух разных пород с пе­сочной окраской в F 1 появляется красная окраска, а в F 2 рас­щепление на 9 красных, 6 песочных и 1 белую.

1/16

Рисунок 4. Наследование формы плода у тыквы (комплементарность).

Рассматривая примеры комплементарного действия генов, можно убедиться, что оно иногда приводит к развитию у гибри­дов признаков, несвойственных исходным формам, т. е. к но­вообразованиям. Зачастую эти «новообразования» являются признаками, свойственными диким предкам данных видов, напри­мер окраска агути у кроликов и т. п. У диких предков домаш­них животных и растений доминантные гены комплементарного действия поддерживались естественным отбором вместе в од­ном генотипе. При одомашнивании с помощью скрещиваний и искусственного отбора комплементарные гены разобщились. Генотип АаВb разлагался селекционерами на генотипы AAbb и ааВВ. Поэтому при скрещивании и наблюдается иногда как бы возврат к признакам диких предков.

Эпистаз. При доминировании действие одной аллели подав­ляются другой аллелью этого же гена: А>а, В>b и т. д. Но существует взаимодействие, при котором один ген подавляет действие другого, например А>В или B>A, а>В или b>А и т. д.

Такое явление называется эпистазом. Гены, подавляющие действие других генов, называются супрессорами или ингиби­торами. Они могут быть как доминантными, так и рецессив­ными. Гены-супрессоры известны у животных, растений и ми­кроорганизмов. Обычно они обозначаются I или S.

Эпистаз принято делить на два типа: доминантный и рецес­сивный.

Под доминантным эпистазом понимают подавление одним доминантным геном действия другого гена.

Расщепление 13:3. Из многих примеров доминантного эпистаза приведем лишь некоторые. Так, у льна (Linura usitatissimum) наряду с формами, имеющими нормальные лепе­стки, встречаются растения с гофрированными лепестками. При скрещивании двух форм с нормальными лепестками, имеющих разное происхождение, в F 1 все гибриды имеют нормальные лепестки, а в F 2 получается расщепление: 13/16 растений с нор­мальными лепестками и 3/16 - с гофрированными. Характер расщепления свидетельствует о том, что форма лепестков оп­ределяется двумя парами генов. В таком случае одно из исход­ных растений должно нести в скрытом состоянии ген гофрированности лепестков, действие которого подавлено ингибитором. Следовательно, у растений этого генотипа нормальная форма лепестков определяется не особыми генами (нормальной формы лепестков), а геном - подавителем гофрированности.

Обозначим ген гофрированности лепестков - А, нормальной формы - а (это основные гены формы лепестков), ингибитор гофрированности - I, ген отсутствия подавления - i. Тогда ис­ходные формы с нормальными лепестками будут иметь гено­типы IIАА и iiaа, гибриды F 1 IiАа - также нормальные, а рас­щепление в F 2 13/16 нормальных: 3/16 гофрированных можно представить как 9 (I-A-)+3 (I-аа) +1 (iiaa) = 13 нормальных и 3 iiA - гофрированных. Таким образом, подавление действия доминантного гена гофрированности лепестков доминантной аллелью другого гена (подавителя) обусловливает в F 2 рас­щепление по фенотипу в отношении 13:3 [(9 + 3+1): 3].

Этот тип взаимодействия широко распространен в природе и наблюдается в наследовании окрашенности и неокрашенности зерен у кукурузы и оперения у кур и т. п. На рисунке 5 изобра­жено наследование окраски луковицы у лука Allium сера.

Рисунок 5. Наследование окраски лукови­цы у Allium сера (эпистаз): А - наличие окраски; а - отсут­ствие окраски; I - подавитель ок­раски; i - окраска не подавляется.

Расщепление 12:3:1. Доминантный эпистаз может давать и другое расщепление в F 2 по фенотипу, а именно 12: 3: 1 [(9 + 3) : 3: 1]. В этом случае, в отличие от предыдущего, форма, гомозиготная по обоим рецессивным генам, имеет спе­цифический фенотип.

Например, некоторые собаки (Canis familiaris) с белой окраской шерсти при скрещивании с собаками, имеющими ко­ричневую окраску, дают в F 1 щенков с белой окраской, а в F 2 расщепление на 12/16 белых, 3/16 чер­ных и 1/16 коричневых (рис. 6). Если проанализировать это скрещи­вание отдельно по свойству окрашенности-неокрашенности и черно-коричневой окраске, то можно убедиться, что отсутствие окраски в F 1 доминирует над ее наличием, а в F 2 наблюдается расщепление 12:4, или 3:1. Расщепление на 3 черных и 1 коричневую свидетельствует о том, что черная окраска опреде­ляется доминантным геном, а ко­ричневая - рецессивным. Теперь можно обозначить ингибитор ок­раски - I, его отсутствие - i, чер­ную окраску - А, коричневую - а. Тогда легко представить генотипы исходных форм и гибридов. Подоб­ный тип эпистаза встречается в на­следовании окраски плодов у тык­вы, окраски шерсти у овец (Ovis aries) и во многих других случаях. Таким образом, гены-подавители обычно не определяют сами какой-либо качественной реакции в разви­тии данного признака, а лишь по­давляют действие других генов. Но в некоторых случаях это не так. Например, у хлопка (Gossypium) по окраске волокон в F 2 наблюдается расщепление на 12 коричневых: 3 зеленых: 1 белую. Однако анализ коричневых волокон в ультрафиолето­вых лучах позволяет выделить два типа коробочек: 3, имеющих волокна только с коричневым пигментом, и 9 - с коричневым и зеленым. У растений последнего типа зеленая окраска опти­чески не видна, так как коричневый пигмент ее как бы подав­ляет, т. е. является ингибитором.

Рисунок 6. Наследование окраски шерсти у собак (эпистаз): А-черная окраска; а - ко­ричневая; I - подавляет ок­раску; i - не подавляет.

Под рецессивным эпистазом понимают такой тип взаимо­действия, когда рецессивная аллель одного гена, будучи в гомо­зиготном состоянии, не дает возможности проявиться доми­нантной или рецессивной аллели другого гена: аa>B- или aa>bb.

Расщепление 9:3:4 приводилось как пример комплемен­тарного взаимодействия генов. Но эти же случаи можно рас­сматривать и как рецессивный эпистаз.

При скрещивании черных кроликов (AAbb) с белыми (ааВВ) все гибриды (АаВb) имеют окраску типа агути, а в F 2 9/16 крольчат оказываются агути (А-В-), 3/16 черных (A-bb) и 4/16 белых (ааВ- и aabb). Эти результаты можно объяснить, предположив, что имеет место рецессивный эпистаз типа аа>В- и aa>bb. При этом кролики генотипа ааВ- и aabb оказы­ваются белыми потому, что ген а в гомозиготном состоя­нии, блокируя образование пигмента, препятствует тем самым проявлению гена - распределителя пигмента В и гена черной окраски b.

Кроме описанных случаев одинарного рецессивного эпитаза, существуют и такие, когда рецессивная аллель каждого гена в гомозиготном состоянии одновременно реципрокно подавляет действие доминантной аллели комплементарного гена, т. е. аа эпистатирует над В-, bb над А-. Такое взаимодействие двух рецессивных подавителей называют двойным рецессивным эпи­стазом. В дигибридном скрещивании расщепление по фено­типу - 9: 7, как и в случае комплементарного взаимодей­ствия генов.

Следовательно, одно и то же расщепление можно трактовать как результат и комплементарного взаимодействия, и эпистаза. Один генетический анализ наследования при взаимодействии генов без знания биохимии и физиологии развития признака в онтогенезе не может раскрыть природы этого взаимодействия. Но без генетического анализа нельзя понять механизм наследственной детерминации развития этих признаков.

Полимерия. Рассмотренные до сих пор типы взаимодействия сенов относились к альтернативным, т. е. качественно разли­чающимся, признакам.

Такие свойства организмов, как, например, темп роста и вес животного, длина стебля растения и т. п., нельзя разложить на четкие фенотипические классы; их необходимо измерять, взве­шивать, подсчитывать, т.е. оценивать количественно. Подобные признаки обычно называют количественными или мерными признаками. Если расположить, например, овец одной породы в порядке возрастания их веса, то между самым мелким и круп­ным животными будет серия незаметных переходов, образую­щих непрерывный ряд.

Наследование таких признаков может происходить по-разному. При одном варианте, признак формируется под действием аллелей одного гена, который может быть представлен разным числом их в генотипе. Например, содержание витамина А в эндосперме зерна кукурузы зависит от количества доминантных аллелей гена у . Как известно, клетки эндосперма содержат три набора хромосом. Следовательно, путем скрещивания можно получить четыре различных по генотипу эндосперма кукурузы, содержащих раз­ное количество доминантных и рецессивных аллелей у . Количе­ство витамина А (в единицах активности) при разных дозах одного и того же гена оказывается следующим:

В эндосперме генотипа у у у. . . 0,05

» » » Y у у. . . 2,25

» » » Y Y у. . . 5,00

» » » Y У У. . . 7,50

Как видно из приведенных данных, действие одной дозы доминантного гена Y соответствует примерно 2,25 - 2,50 единиц активности витамина А. С увеличением дозы гена его действие суммируется, или кумулируется.

Такой тип действия гена называют кумулятивным или адди­тивным, т. е. суммирующимся .

При другом варианте формирование количественного признака у организма, определяется взаимодействием многих доминант­ных генов , действующих на один и тот же признак или свой­ство. В этом случае количе­ственные признаки, могут образовывать по своему проявлению непре­рывный ряд. При этом, количественно варьирующий признак у разных особей одного и того же поколения будет определяться разным числом доминантных генов в генотипе. Так, при скре­щивании рас пшениц (Triticum) с красными и белыми (неокра­шенными) зернами шведский генетик Г. Нильсон-Эле в 1908 г. обнаружил в F 2 обычное моногибридное расщепление в отно­шении 3:1.

Однако при скрещивании некоторых других линий пшениц, различающихся по таким же признакам, в F 2 наблюдается рас­щепление в отношении 15/16 окрашенных: 1/16 белых. Окраска зерен из первой группы варьирует от темно- до бледно-красных (рис. 7).

Генетический анализ растений из семян F 2 разных окрасок показал, что растения, выращенные из белых зерен и из зерен с наиболее темной (красной) окраской, в дальней­шем не дают расщепления. Из зерен с окраской промежуточ­ного типа развились растения, давшие в последующих поколениях расщепление по окраске зерна. Анализ характера расщеп­ления позволил установить, что в данном случае красную окраску зерен определяют доминантные аллели двух разных генов, а сочетание их рецессивных аллелей в гомозиготном со­стоянии определяет отсутствие окраски. Интенсивность окраски зерен зависит от числа доминантных генов в генотипе.

Рисунок 7. Наследование окраски зерна у пшеницы (полимерия)

Гены такого типа, одинаково влияющие на развитие одного признака, были названы генами с однозначным действием или полимерными. Такое же название получили и сами признаки. Поскольку эти гены однозначно влияют на один и тот же при­знак, было принято обозначать их одной латинской буквой с указанием номера разных генов: А 1 , А 2 , A 3 и т. д. Этот тип взаимодействия генов получил название полимерии.

Следовательно, исходные родительские формы, давшие рас­щепление в F 2: 15:1, имели генотипы А 1 А 1 А 2 А 2 и а 1 а 1 а 2 а 2 . Гиб­рид F 1: обладал генотипом A l a 1 A 2 a 2 , а в F 2 появились зерна с разным числом доминантных генов. Наличие всех четырех доминантных аллелей A 1 A 1 A 2 A 2 у 1/16 растений определяет са­мую интенсивную окраску зерна; 4/16 всех зерен имели три доминантных аллели (типа A 1 A 1 A 2 a 2), 6/16 - две (типа A 1 a 1 A 2 a 2), 4/16 - одну (типа A 1 a 1 a 2 a 2), все эти генотипы опреде­ляли различные промежуточные окраски, переходные между интенсивно-красной и белой. Гомозиготной по обоим рецессив­ным генам (a 1 a 1 a 2 a 2) являлась 1/16 всех зерен, и эти зерна ока­зались неокрашенными.

Нетрудно заметить, что частоты пяти перечисленных генотипических классов F 2 распределяются в ряде: 1+4 + 6 + 4+1 = 16, который отображает изменчивость признака окраски зерна пшеницы в зависимости от числа доминантных аллелей в гено­типе. Аналогичный тип наследования известен для некото­рых видов окраски зерен кукурузы, колосковой чешуи у овса и т. п.

При накоплении доминантных полимерных генов их действие суммируется, т. е. они имеют кумулятивный эффект, поэтому взаимодействие такого типа называют кумулятивной поли­мерией .

Очевидно, что если у гибрида F 1 число таких генов в гетеро­зиготном состоянии оказывается не два, а три А 1 а 1 А 2 a 2 А 3 а 3 или более, то число комбинаций генотипов в F 2 увеличивается. Этот ряд генотипов можно представить в виде биноминальной кривой изменчивости данного признака.

В опыте Нильсона-Эле тригибридное расщепление в F 2 по генам окраски зерен пшеницы давало соотношение 63 красных к 1 неокрашенному. В F 2: наблюдались все переходы от интен­сивной окраски зерен с генотипом A 1 A 1 A 2 A 2 A 3 A 3 до полного ее отсутствия у a 1 a 1 a 2 a 2 a 3 a 3 . При этом частоты генотипов с разным количеством доминантных генов распределялись в следующий ряд: 1+6+15 + 20+15 + 6+1=64. На рисунке 8 приведены гистограммы распределения частот генотипов с разным числом до­минантных генов кумулятивного действия в моно-, ди-, три- и по­лигибридном скрещиваниях. Из этого сопоставления видно, что, чем большее число доминантных генов определяет данный при­знак, тем больше амплитуда из­менчивости и тем более плавны переходы между различными группами особей.

Полимерно наследуется, на­пример, пигментация кожи у че­ловека. При бракосочетании негра и белой женщины рождаются дети с промежуточным цветом кожи (мулаты). У отца и матери мулатов могут родиться дети всех типов кожи с окраской разных оттенков, от черной до белой, что определяется комбинацией двух пар полимерных генов.

Рисунок 8. Распределение частот генотипов в F 2 в случае кумулятивной полимерии.

Таким образом, при изучении наследования перечисленных вы­ше признаков в F 2 не наблю­дается расщепления на определенные, легко отличимые фенотипические классы, как это имеет место в случае альтернативных признаков: гладкая или морщи­нистая форма семян у гороха и т. д. Полимерные признаки, как правило, необходимо измерять или подсчитывать. Поэтому, в отличие от альтернативно наследующихся, так называемых качественных признаков, их называют количественными при­знаками. При наследовании таких признаков потомство гиб­рида по фенотипическому проявлению образует непрерыв­ный ряд.

В принципе деление признаков на количественные и каче­ственные условно. Как те, так и другие признаки можно и должно измерять при изучении их наследования, поскольку без количественной оценки любого явления природы не может быть объективного его анализа.

В качестве примера приведем результаты скрещивания двух форм кукурузы - длиннопочатковой и короткопочатковой. Как видно из рисунка 9, початки по их длине у исходных линий кукурузы № 60 (короткопочатковая) и № 54 (длиннопочатковая), а также у гибридов первого и второго поколений распре­деляются с определенной закономерностью. Нетрудно заметить, что эти две линии сильно различаются между собой, но в пре­делах каждой из них длина початков колеблется незначительно. Это указывает на то, что они наследственно сравнительно одно­родны. Захождения в размерах початков родительских форм нет. У гибридных растений F 1 длина початков оказывается про­межуточной, с небольшой изменчивостью. В F 2 размах изменчи­вости значительно увеличивается. Следовательно, непрерывный ряд изменений по длине початка кукурузы можно представить как ряд генотипов с различным числом доминантных генов, обусловливающих данный количественный признак.

Тот факт, что при небольшом числе исследованных растений второго поколения у некоторых из них воспроизводится длина початков, свойственная родительским формам, может указывать на участие небольшого числа полимерных генов в определении длины початка у скрещиваемых форм. Такое предположение вытекает из известной нам формулы 4 n , определяющей число возможных комбинаций гамет, образующих зиготы в F 2 , в зави­симости от числа пар генов, по которым различались исходные родительские формы. Появление в опыте среди 221 растения F 2 форм, сходных с родительскими, указывает на то, что число независимо наследующихся генов, определяющих длину по­чатка, не должно превышать трех (4 3 = 64) или четырех (4 4 = 256). Большая изменчивость признака указывает на его сложную генетическую обусловленность, а меньшая - на мень­шее число факторов, его определяющих.

Приведенные примеры анализа наследования количествен­ных признаков иллюстрируют лишь один из возможных путей их изучения. Другой путь - применение математических мето­дов. Анализ наследования количественных признаков и действия полимерных генов чрезвычайно сложен.

Рисунок 9. Наследование длины початков (в см) у кукурузы (полимерия).

Изучение полимерных генов имеет не только теоретический, но и большой практический интерес. Хозяйственно ценные при­знаки у животных и растений, такие, как жирномолочность ко­ров, яйценоскость кур, длина колоса пшеницы, содержание сахара в корнеплодах свеклы и многие другие, наследуются по типу полимерии.

Проявление полимерных признаков в очень большой степени определяется условиями развития организма. Так, молочная продуктивность коров, длина шерсти овец, скорость роста сви­ней во многом зависят от условий кормления и содержания животных. Величина клубней картофеля, початков кукурузы или длина стебля льна определяются в значительной мере ка­чеством вносимых удобрений, количеством осадков и т. п.

Некумулятивная полимерия. Полимерные гены с однозначным действием могут определять и качественные, т. е. альтернативные, признаки. Примером может служить наследование оперенности ног у кур (Gallus gallus). От скрещи­вания пород, имеющих оперенные и неоперенные ноги, в F 1 по­являются цыплята с оперенными ногами. Во втором поколении происходит расщепление по фенотипу,в отношении 15/16 с опе­ренными ногами и 1/16 с неоперенными, т. е. наблюдается два фенотипичееких класса (рис. 10),

Очевидно, порода с оперенными ногами гомозиготна по двум парам однозначных доминантных генов (A 1 A 1 A 2 A 2), а с неоперенными - имеет генотип а 1 а 1 а 2 а 2 . Сочетание гамет при оплодотворении дает гибриды с генотипом А 1 а 1 А 2 а 2 . Доми­нантные аллели каждого из двух генов действуют качественно однозначно, т. е. определяют оперенность ног. Поэтому гено­типы А 1 -А 2 - (9/16), A 1 -a 2 a 2 (3/16) и a 1 a 1 A 2 -(3/16) соответствуют фенотипу с оперенными ногами, а генотип а 1 а 1 а 2 а 2 (1/16) с неопе­ренными.

Таким же образом осуществляется наследование формы стручка у пастушьей сумки (Capsella bursa pastoris). При скре­щивании расы, имеющей яйцевидные стручки, с расой, у кото­рой плоды треугольной формы, в F 1 все растения имеют тре­угольные стручки, а в F 2 наблюдается расщепление в отноше­нии 15: 1 [(9+3 + 3) : 1].

В двух приведенных примерах наличие в генотипе разного количества доминантных полимерных генов однозначного дей­ствия не изменяет выраженности признака. Достаточно одной доминантной аллели любого из двух генов, чтобы вызвать раз­витие признака. Поэтому такой тип взаимодействия генов был назван некумулятивной полимерией .

Рисунок 10. Наследование оперенности ног у кур (полимерия): А - оперенные ноги, а - неоперенные.

Все рассмотренные типы взаимодействия генов: комплементарное, эпистатическое и полимерное видоизменяют классическую формулу расщепления по фенотипу (9: 3: 3: 1), установленную Менделем для дигибридного скрещивания. В таблице 6 приведены некоторые типы расщепления по фенотипу для дигибридного скрещивания, при этом все они показаны с точки зрения доминантного и рецессивного эпистаза.

Таблица 6

Соотношение фенотипичееких классов расщепления в потомстве дигетерозиготы при некоторых типах взаимодействия генов

Все приведенные типы расщепления по фенотипу столь же закономерны, как 9:3:3: 1; они являются не следствием нару­шения генетического механизма расщепления, а результатом взаимодействия генов между собой в индивидуальном развитии.

Модифицирующее действие генов. При изучении явления взаимодействия были открыты гены основного действия, т. е. такие, которые определяют развитие признака или свойства, например выработку пигментов, форму цветка и т. п., и такие, которые сами по себе не определяют какую-либо качественную реакцию или признак, а лишь усиливают или ослабляют про­явление действия основного гена. Это гены-модификаторы, а их действие - модифицирующее.

Одни из генов-модификаторов могут усиливать эффект основного гена, другие ослаблять. Например, у крупного рога­того скота пегая окраска шерстного покрова определяется ре­цессивным геном и двумя модификаторами, ослабляющими или усиливающими эффект основного гена пегости (рис. 11). Неза­висимо от наличия или отсутствия модификаторов, при скре­щивании животного, имеющего сплошную окраску, с пегим в F 1 будет доминировать сплошная окраска, а в F 2 - осуществляться расщепление 3:1. Действие модификаторов обнаруживается в присутствии гена пегости и проявляется в увеличении или уменьшении непигментированных участков шерстного покрова.

Рисунок 11. Модификация пегости у крупного рогатого скота: 1-усиленная пегость; 2 - пегость; 3 - ослабленная пегость.