Тема 2. МЕТОДЫ ИССЛЕДОВАНИЯ В ГИСТОЛОГИИ. ПРИГОТОВЛЕНИЕ ГИСТОЛОГИЧЕСКОГО ПРЕПАРАТА

Основным методом исследования в гистологии является микроскопирование – изучение гистологических препаратов под микроскопом. В последнее время микроскопия сочетается с другими методами – гистохимией и гисторадиографией. Для микроскопии используют различные конструкции микроскопов, позволяющие изучать различные параметры гистологических препаратов.

Выделяются следующие виды микроскопии:

1) световая микроскопия (наиболее распространенный вид микроскопии, при этом разрешающая способность микроскопа составляет 0,2 мкм);

2) ультрафиолетовая микроскопия (разрешающая способность микроскопа составляет 0,1 мкм);

3) люминисцентная микроскопия (применяется для определения в исследуемом гистологическом препарате определенных химических структур);

4) фазово-контрастная микроскопия (применяется для обнаружения и изучения определенных структур в неокрашенных гистологических препаратах);

5) поляризационная микроскопия (используется в основном для изучения волокнистых структур);

6) микроскопия в темном поле применяется для изучения живых объектов;

7) микроскопия в падающем свете (предназначена для изучения толстых объектов);

8) электронная микроскопия (наиболее современный вид микроскопии, имеющий разрешающую способность 0,1 – 0,7 нм). Имеются две разновидности электронной микроскопии – просвечивающая (трансмиссионная) и сканирующая (или растворная) микроскопия, дающая отображение поверхностных ультраструктур.

Гистологические и цитохимические методы применяются для определения состава химических веществ и их количества в определенных структурах. Принцип метода заключается в химической реакции между реактивом и субстратом, содержащимся в исследуемом веществе. При этом образующиеся побочные продукты реакции можно обнаружить с помощью световой или люминисцентной микроскопии.

Метод гистоавторадиографии позволяет выявить состав химических веществ в исследуемых структурах и интенсивность обмена по включению радиоактивных изотопов. Данный метод чаще всего используется при экспериментах на животных.

Метод интерферонометрии позволяет определять сухую массу вещества в живых или фиксированных объектах.

Метод культуры клеток – это выращивание клеток в пробирках или в особых капсулах в организме и последующее изучение живых клеток под микроскопом.

Метод витального окрашивания – введение животным в кровь или в брюшную полость красителя (трепанового синего), который при жизни животного захватывается определенными клетками – макрофагами, а после забоя животного и приготовления препарата определяются и подсчитываются клетки, содержащие краситель.

Иммуноморфологические методы позволяют с помощью предварительно проведенных иммунных реакций (на основе взаимодействия антиген – антитело) определять субпопуляцию лимфоцитов, степень чужеродности клеток, проводить гистологическое типирование тканей и органов, т. е. определять их гистосовместимость для дальнейшей трасплантации.

Метод дифференциального центрифугирования – изучение отдельных органелл или даже их фрагментов, выделенных из клетки. Для этого кусочек исследуемого органа растирают, заливают физиологическим раствором, а затем разгоняют в центрифуге при различных оборотах (от 2 до 150 тыс. в 1 мин). В результате центрифугирования получают интересующие фракции, которые затем изучают различными методами.

Методы морфометрии – количественные методы. Они позволяют определять размеры и объемы ядра – кариометрия, клеток – цитометрия, органелл – электронная морфометрия, а также определять число клеток различных популяций и субпопуляций. Данные методы широко используются в научных исследованиях.

Различные экспериментальные методы – пищевая и водная нагрузка, физические методы (УВЧ, СВЧ, лазеры, магниты). Они применяются для изучения реакции интересующих структур на то или иное воздействие и сочетаются с методами морфометрии, цито– и гистохимии. Данные методы также применяются в научных исследованиях.

Таким образом, основным и наиболее распространенным методом изучения в гистологии является микроскопия. Приготовление гистологического препарата включает в себя следующие этапы.

1. Взятие материала – кусочка ткани или органа. При заборе материала необходимо выполнять следующие правила:

1) забор материала должен проводиться как можно раньше после смерти или забоя животного, при возможности от живого объекта, чтобы как можно лучше сохранить структуру исследуемых клеток;

2) забор материала должен проводиться острым инструментом, чтобы не травмировать ткани;

3) толщина кусочка не должна превышать 5 мм, чтобы фиксирующий раствор смог проникнуть на всю глубину ткани;

4) обязательно необходимо произвести маркировку кусочка, при этом указываются наименование органа, номер животного или фамилия человека, дата забора.

2. Фиксация материала . Данный этап проводится для того, чтобы остановить обменные процессы в клетке и сохранить ее от распада. Для этого взятый на исследование кусочек ткани погружают в фиксирующий раствор. Раствор может быть простым (спирт или формалин) и сложным (раствор Карнуа, фиксатор Цинкера). Фиксатор вызывает денатурацию белков и сохраняет структуру клеток в состоянии, близком к прижизненному. Фиксацию можно проводить также путем замораживания – охлаждением жидким азотом или струей углекислого газа.

3. Заливка кусочков ткани в уплотняющие среды (парафин, смолы) – или замораживание. Данный этап необходим для того, чтобы в последующем из исследуемой ткани можно было изготовить тонкий срез.

4. Приготовление срезов на микротоме или ультрамикротоме с помощью специальных ножей . После этого срезы для световой микроскопии приклеиваются на предметные стекла, а для электронной – монтируются на специальные сеточки.

5. Окраска срезов или их контрастирование (для электронной микроскопии). Перед окраской срезов необходимо удалить уплотняющую среду – выполнить депарафирование. С помощью окраски достигается контрастность изучаемых структур. Красители можно подразделить на основные, кислые и нейтральные. Наиболее широко применяются основные красители (гематоксилин) и кислые (эозин). Часто используются и сложные красители.

6. Просветление срезов в ксилоле и толуоле . Их заключают в смолы (бальзам и полистирол) и закрывают покровным стеклом.

После данных процедур препарат можно исследовать под световым микроскопом. Помещенные под стекло срезы для светового микроскопа могут долго храниться и многократно использоваться. Для электронной микроскопии каждый срез используется только 1 раз, при этом он фотографируется, и изучение структур ткани производится по электронограмме.

Если ткань имеет жидкую консистенцию (например, кровь, костный мозг), то препарат изготавливают в виде мазка на предметном стекле, который затем также фиксируется, окрашивается и изучается.

Из ломких паренхиматозных органов изготавливают препараты в виде отпечатка органа, проводят разлом данного органа, затем к месту разлома прикладывают предметное стекло, на которое приклеиваются свободные клетки. После этого препарат фиксируется и изучается.

Из некоторых органов (например, брыжейки, мягкой мозговой оболочки) или из рыхлой волокнистой соединительной ткани изготавливают пленочные препараты путем растягивания или раздавления между двумя стеклами с последующей фиксацией и заливкой в смолы.

2. Объекты исследования гистологии

3. Приготовление гистологических препаратов

4. Методы исследования

5. Исторические этапы развития гистологии

1. Гистология наука о микроскопическом и субмикроскопическом строении, развитии и жизнедеятельности тканей животных организмов. Следовательно, гистология изучает один из уровней организации живой материи тканевой. Различают следующие иерархические уровни организации живой материи:

    клеточный;

    тканевой;

    структурно-функциональные единицы органов;

    органный уровень;

    системный уровень;

    организменный уровень

Гистология, как учебная дисциплина , включает в себя следующие разделы: цитологию, эмбриологию, общую гистологию (изучает строение и функции тканей), частную гистологию (изучает микроскопическое строение органов).

Основным объектом изучения гистологии является организм здорового человека и потому данная учебная дисциплина именуется как гистология человека.

Основная задача гистологии состоит в изучении строения клеток, тканей, органов, установления связей между различными явлениями, установление общих закономерностей.

Гистология, как и анатомия, относится к морфологическим наукам, главной задачей которых является изучение структур живых систем. В отличие от анатомии, гистология изучает строение живой материи на микроскопическом и электронно-микроскопическом уровне. При этом, изучение строения различных структурных элементов проводится в настоящее время с учетом выполняемых ими функций. Такой подход к изучению структур живой материи называется гистофизиологическим, а гистология нередко именуется как гистофизиология. Кроме того, при изучении живой материи на клеточном, тканевом и органном уровнях рассматривается не только форма, размеры и расположение интересующих структур, но методом цито- и гистохимии нередко определяется и состав веществ, образующих эти структуры. Наконец, изучаемые структуры обычно рассматриваются с учетом их развития, как во внутриутробном (эмбриональном) периоде, так и на протяжении постэмбрионального онтогенеза. Именно с этим связана необходимость включения эмбриологии в курс гистологии.

Гистология, как любая наука, имеет свои объекты и методы их изучения. Непосредственными объектами изучения являются клетки, фрагменты тканей и органов, особым способом приготовленные для изучения их под микроскопом.

2. Объекты исследования подразделяются на:

    живые (клетки в капле крови, клетки в культуре и другие);

    мертвые или фиксированные, которые могут быть взяты как от живого организма (биопсия), так и от трупов.

В любом случае после взятия кусочков они подвергаются действию фиксирующих растворов или замораживанию. И в научных, и в учебных целях используются фиксированные объекты. Приготовленные определенным способом препараты, используемые для изучения под микроскопом, называются гистологическими препаратами.

Гистологический препарат может быть в виде:

    тонкого окрашенного среза органа или ткани;

    мазка на стекле;

    отпечатка на стекле с разлома органа;

    тонкого пленочного препарата.

Гистологический препарат любой формы должен отвечать следующим требованиям:

    сохранять прижизненное состояние структур;

    быть достаточно тонким и прозрачным для изучения его под микроскопом в проходящем свете;

    быть контрастным, то есть изучаемые структуры должны под микроскопом четко определяться;

    препараты для световой микроскопии должны долго сохраняться и использоваться для повторного изучения.

Эти требования достигаются при приготовлении препарата.

3. Выделяют следующие этапы приготовления гистологического препарата

Взятие материала (кусочка ткани или органа) для приготовления препарата. При этом учитываются следующие моменты: забор материала должен проводиться как можно раньше после смерти или забоя животного, а при возможности от живого объекта (биопсия), чтобы лучше сохранились структуры клетки, ткани или органа; забор кусочков должен производиться острым инструментом, чтобы не травмировать ткани; толщина кусочка не должна превышать 5 мм, чтобы фиксирующий раствор мог проникнуть в толщу кусочка; обязательно производится маркировка кусочка (указывается наименование органа, номер животного или фамилия человека, дата забора и так далее).

Фиксация материала необходима для остановки обменных процессов и сохранения структур от распада. Фиксация достигается чаще всего погружением кусочка в фиксирующие жидкости, которые могут быть простыми спирты и формалин и сложными раствор Карнуа, фиксатор Цинкера и другие. Фиксатор вызывает денатурацию белка и тем самым приостанавливает обменные процессы и сохраняет структуры в их прижизненном состоянии. Фиксация может достигаться также замораживанием (охлаждением в струе СО2, жидким азотом и другие). Продолжительность фиксации подбирается опытным путем для каждой ткани или органа.

Заливка кусочков в уплотняющие среды (парафин, целлоидин, смолы) или замораживание для последующего изготовления тонких срезов.

Приготовление срезов на специальных приборах (микротоме или ультрамикротоме) с помощью специальных ножей. Срезы для световой микроскопии приклеиваются на предметные стекла, а для электронной микроскопии - монтируются на специальные сеточки.

Окраска срезов или их контрастирование (для электронной микроскопии). Перед окраской срезов удаляется уплотняющая среда (депарафинизация). Окраской достигается контрастность изучаемых структур. Красители подразделяются на основные, кислые и нейтральные. Наиболее широко используются основные красители (обычно гематоксилин) и кислые (эозин). Нередко используют сложные красители.

Просветление срезов (в ксилоле, толуоле), заключение в смолы (бальзам, полистерол), закрытие покровным стеклом.

После этих последовательно проведенных процедур препарат может изучаться под световым микроскопом.

Для целей электронной микроскопии в этапах приготовления препаратов имеются некоторые особенности, но общие принципы те же. Главное отличие заключается в том, что гистологический препарат для световой микроскопии может длительно храниться и многократно использоваться. Срезы для электронной микроскопии используются однократно. При этом вначале интересующие объекты препарата фотографируются, а изучение структур производится уже на электронограммах.

Из тканей жидкой консистенции (кровь, костный мозг и другие) изготавливаются препараты в виде мазка на предметном стекле, которые также фиксируются, окрашиваются, а затем изучаются.

Из ломких паренхиматозных органов (печень, почка и другие) изготавливаются препараты в виде отпечатка органа: после разлома или разрыва органа, к месту разлома органа прикладывается предметное стекло, на которое приклеиваются некоторые свободные клетки. Затем препарат фиксируется, окрашивается и изучается.

Наконец, из некоторых органов (брыжейка, мягкая мозговая оболочка) или из рыхлой волокнистой соединительной ткани изготавливаются пленочные препараты путем растягивания или раздавливания между двумя стеклами, также с последующей фиксацией, окраской и заливкой в смолы.

4. Основным методом исследования биологических объектов, используемым в гистологии является микроскопирование , т. е. изучение гистологических препаратов по микроскопом. Микроскопия может быть самостоятельным методом изучения, но в последнее время она обычно сочетается с другими методами (гистохимии, гисторадиографии и другие). Следует помнить, что для микроскопии используются разные конструкции микроскопов, позволяющие изучить разные параметры изучаемых объектов. Различают следующие виды микроскопии:

    световая микроскопия (разрешающая способность 0,2 мкм) наиболее распространенный вид микроскопии;

    ультрафиолетовая микроскопия (разрешающая способность 0,1 мкм);

    люминесцентная (флюоресцентная) микроскопия для определения химических веществ в рассматриваемых структурах;

    фазово-контрастная микроскопия для изучения структур в неокрашенных гистологических препаратов;

    поляризационная микроскопия для изучения, главным образом, волокнистых структур;

    микроскопия в темном поле для изучения живых объектов;

    микроскопия в падающем свете для изучения толстых объектов;

    электронная микроскопия (разрешающая способность до 0,1-0,7 нм), две ее разновидности просвечивающая (трансмиссионная) электронная микроскопия и сканирующая или растровая микроскопии дает отображение поверхности ультраструктур.

Гистохимические и цитохимические методы позволяет определять состав химических веществ и даже их количество в изучаемых структурах. Метод основан на проведении химических реакций с используемым реактивом и химическими веществами, находящимися в субстрате, с образованием продукта реакции (контрастного или флюоресцентного), который затем определяется при световой или люминесцентной микроскопии.

Метод гистоавторадиографии позволяет выявить состав химических веществ в структурах и интенсивность обмена по включению радиоактивных изотопов в изучаемые структуры. Метод используется чаще всего в экспериментах на животных.

Метод дифференциального центрифугирования позволяет изучать отдельные органеллы или даже фрагменты, выделенные из клетки. Для этого кусочек исследуемого органа растирают, заливают физиологическим раствором, а затем разгоняют в центрифуге при различных оборотах (от 2-х до 150 тыс.) и получают интересующие фракции, которые затем изучают различными методами.

Метод интерферометрии позволяет определить сухую массу веществ в живых или фиксированных объектах.

Иммуноморфологические методы позволяет с помощью предварительно проведенных иммунных реакций, на основании взаимодействия антиген-антитело, определять субпопуляции лимфоцитов, определять степень чужеродности клеток, проводить гистологическое типирование тканей и органов (определять гистосовместимость) для трансплантации органов.

Метод культуры клеток (in vitro, in vivo) выращивание клеток в пробирке или в особых капсулах в организме и последующее изучение живых клеток под микроскопом.

Единицы измерения, используемые в гистологии

Для измерения структур в световой микроскопии используются в основном микрометры: 1 мкм составляет 0,001 мм; в электронной микроскопии используются нанометры: 1 нм составляет 0,001 мкм.

5. В истории развития гистологии условно выделяют три периода:

Домикроскопический период (с IV в. до н. э. по 1665 г.) связан с именами Аристотеля, Галена, Авиценны, Везалия, Фаллопия и характеризуется попытками выделения в организме животных и человека неоднородных тканей (твердых, мягких, жидких и так далее) и использованием методов анатомической препаровки.

Микроскопический период (с 1665 г. по 1950 г.). Начало периода связывают с именем английского физика Роберта Гука, который, во-первых, усовершенствовал микроскоп (полагают, что первые микроскопы были изобретены в самом начале XVII в.), во-вторых, использовал его для систематического исследования различных, в том числе биологических объектов и опубликовал результаты этих наблюдений в 1665 г. в книге "Микрография", в-третьих, впервые ввел термин "клетка" ("целлюля"). В дальнейшем осуществлялось непрерывное усовершенствование микроскопов и все более широкое использование их для изучения биологических тканей и органов.

Особое внимание уделялось изучению строения клетки. Ян Пуркинье описал наличие в животных клетках "протоплазмы" (цитоплазмы) и ядра, а несколько позже Р. Броун подтвердил наличие ядра и в большинстве животных клеток. Ботаник М. Шлейден заинтересовался происхождением клетокцитокенезисом. Результаты этих исследований позволили Т. Швану, на основании их сообщений, сформулировать клеточную теорию (1838-1839 гг.) в виде трех постулатов:

    все растительные и животные организмы состоят из клеток;

    все клетки развиваются по общему принципу из цитобластемы;

    каждая клетка обладает самостоятельной жизнедеятельностью, а жизнедеятельность организма является суммой деятельности клеток.

Однако вскоре Р. Вирхов (1858 г.) уточнил, что развитие клеток осуществляется путем деления исходной клетки (любая клетка из клетки). Разработанные Т. Шваном положения, клеточной теории актуальны до настоящего времени, хотя формулируется по-иному.

Современные положения клеточной теории:

    клетка является наименьшей единицей живого;

    клетки животных организмов сходны по своему строению;

    размножение клеток происходит путем деления исходной клетки;

    многоклеточные организмы представляют собой сложные ансамбли клеток и их производных, объединенные в системы тканей и органов, связанные между собой клеточными, гуморальными и нервными формами регуляции.

    Дальнейшее совершенствование микроскопов, особенно создание ахроматических объективов, позволило выявить в клетках более мелкие структуры:

    клеточный центр Гертвиг, 1875 г.;

    сетчатый аппарат или пластинчатый комплекс Гольджи, 1898 г.;

    митохондрии Бенда, 1898 г.

Современный этап развития гистологии начинается с 1950 г. с момента начала использования электронного микроскопа для изучения биологических объектов, хотя электронный микроскоп был изобретен раньше (Е. Руска, М. Кноль, 1931 г.). Однако для современного этапа развития гистологии характерно внедрение не только электронного микроскопа, но и других методов: цито- и гистохимии, гисторадиографии и других вышеперечисленных современных методов. При этом обычно используется комплекс разнообразных методик, позволяющий составить не только качественное представление об изучаемых структурах, но и получить точные количественные характеристики. Особенно широко в настоящее время используются различные морфометрические методики, в том числе автоматизированные системы обработки полученной информации с использованием компьютеров.

ЛЕКЦИЯ 2. Цитология. Цитоплазма

Предмет гистология. Методы гистологических исследований. Клеточная теория.

ВВЕДЕНИЕ В ГИСТОЛОГИЮ. СТРОЕНИЕ КЛЕТКИ.

Лекция 1

Гистология – это наука о строении, развитии и жизнедеятельности тканей материи. Ткани изучают в живом и неживом состоянии. Изучение гистологических объектов, их тончайшей структуры проводят при помощи микроскопов, которые увеличивают невидимые простым глазом детали строения в несколько сотен тысяч раз.

Курс гистологии условно разделен на следующие разделы:

1. Цитология - наука о клетке.

2. Эмбриология - наука о развитии, от зарождения до полного формирования организма.

3. Общая гистология - наука об общих закономерностях, присущих тканям.

4. Частная гистология – наука о строении, развитии органов и систем.

Главной задачей гистологии как предмета является получение знаний о микроскопическом и ультрамикроскопическом строении клеток, тканей органов и систем здорового организма, в неразрывной связи с их развитием и выполняемыми функциями.

Основными методами гистологических исследований являются микроскопирование и специальные (немикроскопические) методы (гистохимия, цитофотометрия, авторадиография и др.).

Объектами исследования могут быть живые или мертвые (фиксированные) клетки и ткани.

Для изучения клеток и тканей под микроскопом изготавливают гистологические препараты.

Основными методами исследования гистологических объектов яв­ляются световая и электронная микроскопия, которые широко исполь­зуются в клинической и экспериментальной практике.

Светооптические микроскопы. Основная оптическая часть микроскопа состоит из объектива и окуляра. Объектив является наиболее ответственной оптической системой, дающей увеличенное изображение предмета. Окуляр - оптическая система, которая служит в качестве лупы при визуальном на­блюдении увеличенного изображения предмета, даваемого объективом. Окуляр обычно увеличивает изображение в 5-25 раз.

Так же важнейшими характеристиками микроскопа являются раз­решающая способность и увеличение. Разрешающая способность - минимальное расстояние между двумя точками объекта, которые видны раздельно. Увеличение микроскопа- величина, показывающая, во сколько раз линейные размеры изображения, формируемого оптической системой микроскопа, больше линейных размеров объекта. Увеличение микроскопа зависит от увеличений объектива и окуляра и численно рав­но произведению этих увеличений. Современные оптические микроскопы имеют предел полезного увеличения до 1500 раз.

Электронная микроскопия. Электронные микроскопы обладают вы­сокой разрешающей способностью. Другими словами, в электронном микроскопе теоретически возможно повышение разрешающей способ­ности и соответственно увеличение изображения в 150000 раз больше по сравнению со световым микроскопом. Наиболее часто в морфологиче­ских исследованиях используются просвечивающие электронные мик­роскопы, позволяющие получить плоскостное изображение изучаемого объекта. В последние годы активно применяются растровые (сканирую­щие) электронные микроскопы, способные создавать трехмерные изоб­ражение, т. е. получать пространственное изображение структур.


Методы количественного исследования микроструктур в гистологиче­ских и цитологических препаратах. Количественная оценка микрострук­тур является необходимым условием получения объективных данных об их состоянии в норме, при экспериментальных воздействиях и в па­тологии. Основными количественными показателями микроструктур являются морфометрические (число структур и их геометрические пара­метры) и денситометрические, отражающие концентрацию (оптическую плотность) химических веществ в микроструктурах. Для выявления этих параметров применяют морфометрические и спектрофотометрические методы, а также автоматизированные системы обработки изображений.

Изучение организма на тканевом и клеточном уровнях требует при­готовления гистологических препаратов и их рассмотрения под микро­скопом. Цель приготовления гистологического препарата заключается в том, чтобы путем обработки привести исследуемый материал в удобное для изучения под микроскопом состояние, сделать его прозрачным и контрастным.

Часто изучение материала в свежем виде является наиболее целе­сообразным (например, наблюдение за работой ресничек мерцательно­го эпителия). Для приготовления препарата берется чистое предметное стекло. На его середину помещается капля воды или физиологического раствора, в которую погружают кусочки ткани, подлежащей рассмотре­нию, и под контролем микроскопа расправляют их препаровальными иглами.

Чтобы сделать препарат контрастнее и получить возможность хоро­шо различать отдельные его детали, объект подвергают окрашиванию. При этом пользуются тем, что разные структуры тканей и клеток по-раз­ному реагируют на тот или иной краситель.

Изготовление постоянных препаратов требует довольно большой затраты труден времени, такие препараты можно использовать в течение многих лет. Препараты готовят из небольших целых объектов (тоталь­ные препараты) или срезов; При всех условиях объект или срез должен быть тонким и прозрачным, иначе невозможно его изучение под микро­скопом.

Изготовление препарата состоит из нескольких этапов.

Современные методы исследования тканей и клеток используют достижения физики, химии, биохимии, молекулярной биологии, генной инженерии. Это стало возможным в связи с созданием новых приборов и технологий – различных типов микроскопов, компьютерной техники, рентгеноструктурного анализа, авторадиографии, электрофореза и хроматографии, разделение и культивирование клеток, получение гибридов и гибридом и др. Однако, несмотря на такие разнообразные методы, гистология в своей основе является морфологической наукой, объектами исследования которой служат живые и фиксированные клетки и ткани.

Основными методами изучения строения животных и растительных клеток и тканей является световая микроскопия. Современные световые микроскопы обеспечивают разрешение (возможность наблюдать две точки раздельно) порядка 0,2 мкм и дают максимальное увеличение в 2000-2500 раз. Для контрастности микрообъектов их окрашивают после фиксации. Фиксация сводится к закреплению прижизненного строения исследуемого объекта.

К фиксирующим средствам относят формалин (5-20%), этиловый спирт, осьмиевую кислоту.

Окрашивание производят различными методами в зависимости от задач исследования.

К световой микроскопии относят фазово-контрастную, флуоресцентную, ультрафиолетовую, интерференционную и микроскопию в темном поле.

Фазово-контрастная микроскопия используется для исследования прозрачных бесцветных живых объектов (клеток и тканей). Этот метод обеспечивает контрастность изучаемых неокрашенных структур за счет специальной кольцевой диафрагмы, помещаемой в конденсоре, и фазовой пластинки, находящейся в объективе. В результате становятся видны в черно-белом изображении все структуры, различающиеся по показателю преломления.

Флюоресцентная (люминесцентная) микроскопия. При флюоресценции атомы и молекулы ряда веществ, поглощая коротковолновые лучи, переходят в возбужденное состояние. Обратный переход в нормальное состояние происходит с испусканием света, но с большей длиной волны.

Препарат просматривают в ультрафиолетовых или фиолетовых и синих лучах.

Различают собственную, или первичную, и наведенную, или вторичную, флюоресценцию. Первичной флюоресценцией обладают серотонин, катехоламины (адреналин, норадреналин), содержащиеся в нервных, тучных и других клетках, после фиксации тканей в парах формальдегида при 60-80ºС.

Вторичная флюоресценция вызывается специальными красителями – флюорохромами (акриноранжевый, родамин, флюорецин и др.). Например, при обработке препаратов акриновым оранжевым ДНК в клетке имеет ярко-зеленое, а РНК – ярко-красное свечение.

Ультрафиолетовая микроскопия основана на применении коротких ультрафиолетовых лучей с длиной волны около 0,2 мкм. Разрешаемое расстояние при этом составляет 0,1 мкм. Изображение регистрируется на фотопластинке или на люминесцентном экране.

Микроскопия в темном поле . Используется специальный конденсор, который освещает препарат строго косым светом; лучи от осветителя направляются сбоку. Наблюдаемый объект выглядит как освещенный на темном поле. Используется этот метод для наблюдения живых объектов, для изучения кристаллов в моче.

Интерференционная микроскопия. Для количественного определения массы ткани используется интерференционный микроскоп, а для изучения рельефа поверхности клеток – дифференциальный интерференционный микроскоп (с оптикой Номарского).

В интерференционном микроскопе пучок света от осветителя разделяется на два потока: один проходит через объект, другой минуя объект. В призмах объектива оба пучка соединяются и интерферируют между собой. При этом участки микрообъекта разной толщины и плотности различаются по степени контрастности. После количественной оценки изменений определяют концентрацию и массу сухого вещества. Преимуществом фазово-контрастной, интерференционной и темнопольной микроскопии является возможность наблюдать клетки в процессе движения и деления (митоз, мейоз).

Поляризационная микроскопия является модификацией светового микроскопа, в котором установлены два поляризационных фильтра: один (поляризатор) между пучком света и объектом, а второй (анализатор) между линзой объектива и глазом. Оба фильтра могут вращаться, изменять направление пучка света.

При этом проявляется свойство некоторых органических структур по разному преломлять поляризованный свет вдоль различных оптических осей в связи с особой ориентацией своих молекул (анизотропия). Например, коллагеновые волокна и миофибриллы при изменении оси вращения фильтров проявляются как светящиеся.

Электронная микроскопия. В электронном микроскопе используется поток электронов в вакууме с более короткими, чем в световом микроскопе длинами волн. При напряжении в 50000В длина волны электромагнитных колебаний равна 0,0056 нм.

Теоретически рассчитано, что разрешаемое расстояние в этих условиях может быть 0,002 нм, т.е. в 100000 раз меньше, чем в световом микроскопе. Однако практически оно составляет 0,1-0,7 нм. В настоящее время в гистологических исследованиях используют трансмиссионные (просвечивающие) электронные микроскопы (ТЭМ) и сканирующие (растровые) электронные микроскопы (СЭМ). Просвечивающие электронные микроскопы позволяют получить лишь плоскостное изображение изучаемого микрообъекта, а сканирующие способны создавать трехмерное изображение, т.е. последовательно прощупывают электронным пучком отдельные точки поверхности.

Полученное изображение выводится на телевизионный экран, электронный луч которого движется синхронно с микрозондом.

Для изучения деталей строения мембран и межклеточных контактов применяется метод замораживания – скалывания (-160ºС). Метод электронной микроскопии «замораживание» - травление применяют для изучения внешней поверхности мембран клеток. После замораживания блок раскалывают кристаллы льда, удаляют путем возгонки воды в вакууме. Затем на участки клеток напыляют тонкую пленку тяжелого металла (например, платины).

Методы замораживания позволяют изучать нефиксированные клетки без образования в них артефактов, вызываемых фиксатором.

Сверхвысоковольтная микроскопия. Электронные микроскопы с ускоряющим напряжением до 3000000В позволяют исследовать объекты большой толщины (1-10 мкм).

Для изучения структуры макромолекул на атомарном уровне применяют методы с использованием рентгеновских лучей, имеющих длину волны около 0,1нм (диаметр атома водорода).

Гистология – («гистос» греч. – ткань, логис - учение) Это наука о строении, развитии и жизнедеятельности тканей многоклеточных организмов и человека. Невооруженному глазу недоступны объекты, являющиеся предметом этой науки. Поэтому и история гистологии тесно связана с истроией создания таких приборов, которые позволяют изучить мельчайшие предметы, невооруженным глазом. 2

Курс гистологии условно разделен на следующие разделы: n 1. Цитология - наука о клетке. n 2. Эмбриология - наука о развитии, от зарождения до полного формирования организма. n 3. Общая гистология - наука об общих закономерностях, присущих тканям. n 4. Частная гистология - изучает строение, развитие органов и систем.

ЦИТОЛОГИЯ – (греч. κύτος «клетка» и λόγος - «учение» , «наука») n Раздел биологии, изучающий живые клетки, их органоиды, их строение, функционирование, процессы клеточного размножения, старения и смерти. 4

ЭМБРИОЛОГИЯ n (от др. -греч. ἔμβρυον - эмбрион, зародыш + -λογία от λόγος - учение) - это наука, изучающая развитие зародыша. 5

История создания клеточной теории 1590 год. Янсен изобрел микроскоп, в котором увеличение обеспечивалось соединением двух линз. 1665 год. Роберт Гук впервые употребил термин клетка. 1650 -1700 годы. Антони ван Левенгук впервые описал бактерии и другие микроорганизмы. 1700 -1800 годы. Опубликовано много новых описаний и рисунков различных тканей, преимущественно растительных. 1827 году Карл Бэр обнаружил яйцеклетку у млекопитающих. 1831 -1833 годы. Роберт Броун описал ядро в растительных клетках. 1838 -1839 годы. Ботаник Матиас Шлейден и зоолог Теодор Шванн объединили идеи разных ученых и сформулировали клеточную теорию, которая постулировала, что основной единицей структуры и функции в живых организмах является клетка. 1855 год. Рудольф Вирхов показал, что все клетки образуются в результате клеточных делений.

История создания клеточной теории 1665 год. Рассматривая под микроскопом срез пробки, английский ученый, физик Роберт Гук обнаружил, что она состоит из ячеек, разделенных перегородками. Эти ячейки он назвал "клетками"

История создания клеточной теории В XVII столетии Левенгук сконструировал микроскоп и открыл людям дверь в микромир. Перед глазами изумленных исследователей замелькали разнообразнейшие инфузории, коловратки и прочая мельчайшая живность. Оказалось, что они повсюду – эти мельчайшие организмы: в воде, навозе, в воздухе и пыли, в земле и водосточных желобах, в гниющих отходах животного и растительного происхождения.

История создания клеточной теории 1831 -1833 годы. Роберт Броун описал ядро в растительных клетках. В 1838 г. немецкий ботаник М. Шлейден привлек внимание к ядру, считал его образователем клетки. По Шлейдену, из зернистой субстанции конденсируется ядрышко, вокруг которого формируется ядро, а вокруг ядра - клетка, причём ядро в процессе образования клетки может исчезать.

История создания клеточной теории Немецкий зоолог Т. Шванн показал, что из клеток состоят и ткани животных. Он создал теорию, утверждающую, что клетки, содержащие ядра, представляют собой структурную и функциональную основу всех живых существ. Клеточная теория строения была сформулирована и опубликована Т. Шванном в 1839 г. Суть её можно выразить в следующих положениях: 1. Клетка – элементарная структурная единица строения всех живых существ; 2. Клетки растений и животных самостоятельны, гомологичны другу по происхождению и структуре. Каждая клетка функционирует независимо от других, но вместе со всеми. 3. Все клетки возникают из бесструктурного межклеточного вещества. (Ошибка!) 4. Жизнедеятельность клетки определяется оболочкой. (Ошибка!)

История создания клеточной теории В 1855 г. немецкий врач Р. Вирхов сделал обобщение: клетка может возникнуть только из предшествующей клетки. Это привело к осознанию того факта, что рост и развитие организмов связаны с делением клеток и их дальнейшей дифференцировкой, приводящей к образованию тканей и органов.

История создания клеточной теории Карл Бэр Еще в 1827 году Карл Бэр обнаружил яйцеклетку у млекопитающих, доказал, что развитие млекопитающих начинается с оплодотворенной яйцеклетки. Значит развитие любого организма начинается с одной оплодотворенной яйцеклетки, клетка является единицей развития.

История создания клеточной теории 1865 г. Опубликованы законы наследственности (Г. Мендель). 1868 г. Открыты нуклеиновые кислоты (Ф. Мишер) 1873 г. Открыты хромосомы (Ф. Шнейдер) 1874 г. Открыт митоз у растительных клеток (И. Д. Чистяков) 1878 г. Открыто митотическое деление животных клеток (В. Флеминг, П. И. Перемежко) 1879 г. Флеминг – поведение хромосом во время деления. 1882 г. Открыт мейоз у животных клеток (В. Флеминг) 1883 г. Показано, что в половых клетках число хромосом в два раза меньше, чем в соматических (Э. Ван Бенеден) 1887 г. Открыт мейоз у растительных клеток (Э. Страсбургер) 1898 г. Гольджи открыл сетчатый аппарат клетки, аппарат Гольджи. 1914 г. Сформулирована хромосомная теория наследственности (Т. Морган). 1924 г. Опубликована естественно-научная теория происхождения жизни на Земле (А. И. Опарин). 1953 г. Сформулированы представления о структуре ДНК и создана ее модель (Д. Уотсон и Ф. Крик). 1961 г. Определены природа и свойства генетического кода (Ф. Крик, Л. Барнет, С. Беннер).

Основные положения современной клеточной теории 1. Клетка - элементарная живая система, единица строения, жизнедеятельности, размножения и индивидуального развития организмов. 2. Клетки всех живых организмов гомологичны, едины по строению и происхождению. 3. Образование клеток. Новые клетки возникают только путем деления ранее существовавших клеток. 4. Клетка и организм. Клетка может быть самостоятельным организмом (прокариоты и одноклеточные эукариоты). Все многоклеточные организмы состоят из клеток. 5. Функции клеток. В клетках осуществляются: обмен веществ, раздражимость и возбудимость, движение, размножение и дифференцировка. 6. Эволюция клетки. Клеточная организация возникла на заре жизни и прошла длительный путь эволюционного развития от безъядерных форм (прокариот) к ядерным (эукариотам).

МЕТОДЫ МИКРОСКОПИРОВАНИЯ ГИСТОЛОГИЧЕСКИХ ПРЕПАРАТОВ 1. Световая микроскопия. 2. Ультрафиолетовая микроскопия. 3. Флюоресцентная (люминесцентная) микроскопия. 4. Фазово-контрастная микроскопия. 5. Микроскопия в темном поле. 6. Интерференционная микроскопия 7. Поляризационная микроскопия. 8. Электронная микроскопия. 17

Микроскоп n Этот оптический прибор позволяет наблюдать мелкие объекты. Увеличение изображения достигается системой линз объектива и окуляра. Зеркало, конденсор и диафрагма направляют световой поток и регулируют освещение объекта. Механическая часть микроскопа включает: штатив, предметный столик, макро- и микрометрический винты, тубусодержатель. 18

Специальые методы микроскопирования: - фазовоконтрастный микроскоп - (для изуч. живых неокраш-х обьектов)- микроскопия позволяет изучать живые и неокрашенные объекты. При прохождении света через окрашенные объекты изменяется амплитуда световой волны, а при прохождении света через неокрашенные – фаза световой волны, что и используют для получения высококонтрастного изображения в фазово-контрастной и интерференционной микроскопии. - темнопольный микроскоп (для изуч. живых неокраш-х обьектов). Используют специальный конденсор, выделяющий контрастирующие структуры неокрашенного материала. Темнопольная микроскопия позволяет наблюдать живые объекты. Наблюдаемый объект выглядит как освещённый на тёмном поле. При этом лучи от осветителя падают на объект сбоку, а в линзы микроскопа поступают только рассеянные лучи. 19

Специальые методы микроскопирования люминесцентный мик-п (для изуч. живых неокраш-х обьектов) микроскопия применяется для наблюдения флюоресцирующих (люминесцирующих) объектов. В люминесцентном микроскопе свет от мощного источника проходит через два фильтра. Один фильтр задерживает свет перед образцом и пропускает свет длины волны, возбуждающей флюоресценцию образца. Другой фильтр пропускает свет длины волны, излучаемой флюоресцирующим объектом. Таким образом, флюоресцирующие объекты поглощают свет одной длины волны и излучают в другой области спектра. -ультрафиолетовый способность м-па) мик-п (повышает разрешающую -поляризационный мик-п (для иссл. обьектов с упорядочонным располажением молекул - скелет. муск-ра, коллагеновые волокна и т. д.) микроскопия – формирование изображения неокрашенных анизотропных структур (например, коллагеновые волокна и миофибриллы). 20

Специальые методы микроскопирования -интерфекренционная микроскопия (для опред-я сухового остатка в клетках, определение толщины обьектов) - микроскопия объединяет принципы фазово-контрастной и поляризационной микроскопии и применяется для получения контрастного изображения неокрашенных объектов. Специальная интерференционная оптика (оптика Номарского) нашла применение в микроскопах с дифференциальным интерференционным контрастом. В. Электронная микроскопия: -трансмиционная (изучение обьектов на просвет) -сканирующий (изучение поверхности обьектов) Теоретически разрешение просвечивающего ЭМ составляет 0, 002 нм. Реальное разрешение современных микроскопов приближается к 0, 1 нм. Для биологических объектов разрешение ЭМ на практике составляет 2 нм. 21

Специальые методы микроскопирования Просвечивающий электронный микроскоп состоит из колонны, через которую в вакууме проходят электроны, излучаемые катодной нитью. Пучок электронов, фокусируемый кольцевыми магнитами, проходит через подготовленный образец. Характер рассеивания электронов зависит от плотности образца. Проходящие через образец электроны фокусируют, наблюдают на флюоресцирующем экране и регистрируют при помощи фотопластинки. Сканирующий электронный микроскоп применяют для получения трёхмерного изображения поверхности исследуемого объекта. Метод сколов (замораживание-скалывание) применяют для изучения внутреннего строения клеточных мембран. Клетки замораживают при температуре жидкого азота в присутствии криопротектора и используют для изготовления сколов. Плоскости скола проходят через гидрофобную середину двойного слоя липидов. Обнажённую внутреннюю поверхность мембран оттеняют платиной, полученные реплики изучают в сканирующем ЭМ. 22

Специальные (немикроскопические) методы: 1. Цито- или гистохимия - суть заключается использовании строгоспецифических химических реакций с светлым конечным продуктом в клетках и тканях для определения количества различных веществ(белков, ферментов, жиров, углеводов и т. д.). Можно применить на уровне светового или электронного микроскопа. 2. Цитофотометрия - метод применяется в комплексе с 1 и дает возможность количественно оценить выявленные цитогистохимическим методом белки, ферменты и т. д. 3. Авторадиография - вводят в организм вещества, содержащие радиоактивные изотопы химических элементов. Эти вещества включаются в обменные процессы в клетках. Локализацию, дальнейшие перемещения этих веществ в органах определяются на гистопрепаратах по излучению, которое улавливается фотоэмульсией, нанесенной на препарат. 4. Рентгентоструктурный анализ - позволяет определить количество химических элементов в клетках, изучить молекулярную структуру биологических микрообьектов. 24 5. Морфометрия - измерение размеров биол. структур на клеточном и субклеточном уровне.

Специальные (немикроскопические) методы 6. Микроургия - проведение очень тонких операций микроманипулятором под микроскопом (пересадка ядер, введение в клетки различных веществ, измерение биопотенциалов и т. д.) 6. Метод культивирования клеток и тканей - в питательных средах или в диффузионных камерах, имплантированных в различные ткани организма. 7. Ультрацентрофугирование - фракционирование клеток или субклеточных структур путем центрофугирования в растворах различной плотности. 8. Экспериментальный метод. 9. Метод трансплантации тканей и органов. 25

Фиксация сохраняет структуру клеток, тканей и органов, предотвращает их бактериальное загрязнение и ферментное переваривание, стабилизирует макромолекулы путём их химического сшивания. 32

Фиксирующая жидкость формалин, спирты, глутаральдегид - Наиболее распространённые фиксаторы; Криофиксация - Лучшую сохранность структур обеспечивает мгновенное замораживание образцов в жидком азоте (– 196 °С); Лиофилизация – небольшие кусочки ткани подвергаются быстрому замораживанию, прекращающему метаболические процессы. Обезвоживание- стандартная процедура удаления воды-обезвоживание в спиртах, возрастающей крепости (от 70 до 60%). Заливка – делает ткань прочной, предотвращает её раздаваливание и сминание при резании, дает возможность получать срезы стандартной толщины. Наиболее распространенная среда для заливки – парафин. Используют также – целлоидин, пластически среды и смолы. 33

Обезвоживание готовит фиксированную ткань к проникновению в неё сред для заливки. Вода живой ткани, а также вода фиксирующих смесей (большинство фиксаторов – водные растворы) после фиксации должна быть полностью удалена. Стандартная процедура удаления воды – обезвоживание в спиртах возрастающей от 60° до 100° крепости. 34

Заливка – необходимая процедура, предваряющая приготовление срезов. Заливка делает ткань прочной, предотвращает её раздавливание и сминание при резании, даёт возможность получить тонкие срезы стандартной толщины. Наиболее распространённая среда для заливки – парафин. Используют также целлоидин, пластические среды и смолы. 35

Ротационный микротом. 40 n Блоки, содержащие кусочек органа, закрепляют в подвижном объектодержателе. При его опускании на ноже остаются серийные срезы, их снимают с ножа и монтируют на предметное стекло для последующей обработки и микроскопирования.

Методы окраски гистосрезов: n Ядерные (основные): n гематоксилин – окрашивает n n n n ядра в синий цвет; железный гематоксилин; азур II (в фиолетовый); кармин (в красный); сафранин (в красный); метиловый синий (в синий); толуидиновый (в синий); тиониновый (в синий). n Цитоплазматические- (кислые): n эозин – в розовый; n эритрозин; n оранжевый «G» ; n кислый фуксин –в красный; n пикриновая кислота - в желтый; n конго –красный – в красный 44

СПЕЦИАЛЬНЫЕ Методы окраски гистосрезов n Судан III –окраска липидов и жиров в оранжевый цвет; n осмиевая кислота – окраска липидов и жиров в черный цвет; n орсеин -окраска эластических волокон в коричневый цвет; n азотнокислое серебро – импрегнация нервных элементов в темнокоричневый цвет. 45

Структуры клеток: n ОКСИФИЛИЯn способность окрашиваться кислыми красителями в розовый цвет n Базофилияn способность окрашиваться основными красителями в синий цвет n Нейтрофилия – n способность окрашиваться кислыми и основными красителями в фиолетовый цвет. 47

1

Клетка n - это элементарная живая система, состоящая из цитоплазмы, ядра, оболочки и являющаяся основой развития, строения и жизнедеятельности животных и растительных организмов.

Гликокаликс- надмембранный комплекс, состоит из сахаридов, связанных с белками и сахаридов, связанных с липидами. Функции n Рецепция (гормоны, цитокины, медиаторы и антигены) n Межклеточные взаимодействия(раздражимость и узнавание) n Пристеночное пищеварение (микроворсинки каемчатых клеток кишечника)

Функции цитолеммы: - разграничительная; - активный и пассивный транспорт веществ в обе стороны; - рецепторные функции; -контакт с соседними клетками.